1. Proofs

(a) Prove the following statement (proved earlier in lecture): If the columns of \(A \) are linearly dependent, then \(A\vec{x} = \vec{b} \) does not have a unique solution.

Answer: Let’s walk through this proof step by step: we’ll start by assuming we have a matrix \(A \) with linearly dependent columns, and then we will show that this means that the system does not have a unique solution.

Since we are interested in the columns of \(A \), let’s start by explicitly defining the columns of \(A \):

\[
A = \begin{bmatrix}
\vec{a}_1 \\
\vec{a}_2 \\
\vdots \\
\vec{a}_n
\end{bmatrix}
\]

We’ve defined \(A \) to have linearly dependent columns, so by the definition of linear dependence, there exist scalars \(\alpha_1, \ldots, \alpha_n \) such that \(\alpha_1 \vec{a}_1 + \ldots + \alpha_n \vec{a}_n = \vec{0} \) where not all of the \(\alpha_i \)’s are zero. We can put these \(\alpha_i \)’s in a vector

\[
\vec{\alpha} = \begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix}
\]

and by the definition of matrix-vector multiplication, we can compactly write the expression above:

\[
A\vec{\alpha} = \vec{0}
\]

where \(\vec{\alpha} \neq \vec{0} \).

Recall that we are trying to show that the system of equations \(A\vec{x} = \vec{b} \) does not have a unique solution. We know that systems of equations can have either zero, one, or infinite solutions. If our system of equations has zero solutions, then it cannot have a unique solution, so we don’t need to consider this case. Now let’s consider the case where we have at least one solution, \(\vec{x} \):

\[
A\vec{x} = \vec{b}
\]

\[
A\vec{x} + \vec{0} = \vec{b}
\]

\[
A\vec{x} + A\vec{\alpha} = \vec{b}
\]

\[
A(\vec{x} + \vec{\alpha}) = \vec{b}
\]

Therefore, \(\vec{x} + \vec{\alpha} \) is also a solution to the system of equations! Since both \(\vec{x} \) and \(\vec{x} + \vec{\alpha} \) are solutions, and \(\vec{\alpha} \neq \vec{0} \), the system has more than one solution. We’ve now proven the theorem.

Note that we can add any multiple of \(\vec{\alpha} \) to \(\vec{x} \) and it will still be a solution – therefore, if there is at least one solution to the system and the columns of \(A \) are linearly dependent, then there are infinite solutions.

(b) Often, when one is asked to prove something you are asked to prove something of the following nature:
• $P \implies Q$. This is read as P implies Q.

Identify P and Q in the theorem you just proved above.

There are a couple of things to remember when reading these statements. First, is that the direction of implication matters.

• If you prove $P \implies Q$, this does not mean that $Q \implies P$ is also true.

Suppose someone tells you that $P \implies Q$ is true. Then you find out later that Q is actually false. What can you say about P?

• If $P \implies Q$ and Q is false, then P must be false.

Answer: In the theorem above

• $P =$ The columns of A are linearly dependent.
• $Q = A\vec{x} = \vec{b}$ does not have a unique solution.

Consider the simple example:

• $P =$ It is raining.
• $Q =$ There are clouds.
• $P \implies Q$ should be read literally as: If it is raining, then there are clouds.
• Note 1. This **does not** mean: If there are clouds, it is raining. (There could be clouds without rain).
• Note 2. This **does** however mean: If there are no clouds, it is not raining. (Because rain requires there to be clouds.)

2. Identifying a Basis

Does each of these sets of vectors describe a basis for \mathbb{R}^3? If the vectors do not form a basis for \mathbb{R}^3, can they be thought of as a basis for some other vector space?

$V_1 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$
$V_2 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$
$V_3 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$

Answer:

• V_1: The vectors are linearly independent, but they are not a basis for \mathbb{R}^3, because you cannot construct all vectors in \mathbb{R}^3 using these vectors. Instead, they are a basis for some 2-dimensional subspace of \mathbb{R}^3.

This subspace can be described by span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

• V_2: Yes, the vectors are linearly independent and will form a basis for \mathbb{R}^3. To check that the vectors are linearly independent, you should do Gaussian Elimination of the matrix of the columns: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.

Check that you can get all the way to identity, i.e. the system has a unique solution.

• V_3: No, $\vec{v}_2 + \vec{v}_3 = \vec{v}_1$, so the vectors are linearly dependent. Hence, they cannot form a basis for any vector space of any dimension.

3. Exploring Column Spaces and Null Spaces
• The **column space** is the span of the column vectors of the matrix.
• The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?
ii. What is the null space of A? What is its dimension?
iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?
iv. Do the columns of A form a basis for \mathbb{R}^2? Why or why not?

(a) \[
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

Answer:
Column space: $\text{span}\left\{\begin{bmatrix}1 \\0\end{bmatrix}\right\}$
Null space: $\text{span}\left\{\begin{bmatrix}0 \\1\end{bmatrix}\right\}$
The matrix is already row reduced. The column spaces of the row reduced matrix and the original matrix are the same.
Not a basis for \mathbb{R}^2.

(b) \[
\begin{bmatrix}
0 & 1 \\
0 & 1 \\
\end{bmatrix}
\]

Answer:
Column space: $\text{span}\left\{\begin{bmatrix}1 \\1\end{bmatrix}\right\}$
Null space: $\text{span}\left\{\begin{bmatrix}1 \\0\end{bmatrix}\right\}$
The two column spaces are not the same.
Not a basis for \mathbb{R}^2.

(c) \[
\begin{bmatrix}
1 & 2 \\
-1 & 1 \\
\end{bmatrix}
\]

Answer:
Column space: \mathbb{R}^2
Null space: $\text{span}\left\{\begin{bmatrix}0 \\0\end{bmatrix}\right\}$
The two column spaces are the same as the column span \mathbb{R}^2.
This is a basis for \mathbb{R}^2.

(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6 \\
\end{bmatrix}
\]

Answer:
Column space: $\text{span}\left\{\begin{bmatrix}1 \\-3/2\end{bmatrix}\right\}$
Null space: $\text{span}\left\{\begin{bmatrix}2 \\1\end{bmatrix}\right\}$
The two column spaces are not the same.
Not a basis for \mathbb{R}^2.
(e) \[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\]

Answer:

i. The columnspace of the columns is \(\mathbb{R}^2 \). The columns of \(A \) do not form a basis for \(\mathbb{R}^2 \). This is because the columns of \(A \) are linearly dependent.

ii. The following algorithm can be used to solve for the null space of a matrix. The procedure is essentially solving the matrix-vector equation \(A\vec{x} = \vec{0} \) by performing Gaussian elimination on \(A \).

We start by performing Gaussian elimination on matrix \(A \) to get the matrix into upper-triangular form.

\[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix} \sim \begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 2 & 5 & 1
\end{bmatrix} \sim \begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 1 & \frac{5}{2} & \frac{1}{2}
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & \frac{1}{2} & -\frac{7}{2} \\
0 & 1 & \frac{5}{2} & \frac{1}{2}
\end{bmatrix}
\]

reduced row echelon form

\[
x_1 + \frac{1}{2}x_3 - \frac{7}{2}x_4 = 0 \\
x_2 + \frac{5}{2}x_3 + \frac{1}{2}x_4 = 0
\]

\(x_3 \) is free and \(x_4 \) is free

Now let \(x_3 = s \) and \(x_4 = t \). Then we have:

\[
x_1 + \frac{1}{2}s - \frac{7}{2}t = 0 \\
x_2 + \frac{5}{2}s + \frac{1}{2}t = 0
\]

Now writing all the unknowns \((x_1, x_2, x_3, x_4)\) in terms of the dummy variables:

\[
x_1 = -\frac{1}{2}s + \frac{7}{2}t \\
x_2 = -\frac{5}{2}s - \frac{1}{2}t \\
y = s \\
z = t
\]

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{2}s + \frac{7}{2}t \\
-\frac{5}{2}s - \frac{1}{2}t \\
s \\
t
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{2}s \\
-\frac{5}{2}s \\
s \\
0
\end{bmatrix} + \begin{bmatrix}
\frac{7}{2}t \\
-\frac{1}{2}t \\
0 \\
t
\end{bmatrix} = s \begin{bmatrix}
-\frac{1}{2} \\
-\frac{5}{2} \\
1 \\
0
\end{bmatrix} + t \begin{bmatrix}
\frac{7}{2} \\
-\frac{1}{2} \\
0 \\
1
\end{bmatrix}
\]

So every vector in the nullspace of \(A \) can be written as follow:
Nullspace(A) = \begin{pmatrix} -\frac{1}{2} \\ -\frac{5}{2} \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{7}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}

Therefore the nullspace of A is

\[\text{span} \left\{ \begin{pmatrix} -\frac{1}{2} \\ -\frac{5}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{7}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix} \right\} \]

A has a 2-dimensional null space.

iii. In this case, the column space of the row reduced matrix is also \(\mathbb{R}^2 \), but this need not be true in general.

iv. No the columns of A do not form a basis for \(\mathbb{R}^2 \).