1. Series And Parallel Capacitors

Derive C_{eq} for the following circuits.

(a) C_1 C_2

Answer:

(a) $C_{eq} = C_1 + C_2$

The total charge stored on the capacitors is q with q_1 on the first capacitor and q_2 on the second. Then $C_{eq} = \frac{q}{V} = \frac{q_1 + q_2}{V} = \frac{q_1}{V} + \frac{q_2}{V} = C_1 + C_2$.

(b) C_1 C_2

$C_{eq} = C_1 \parallel C_2 = \frac{C_1 C_2}{C_1 + C_2}$

The voltage across the two capacitors V_1 and V_2 must sum to the voltage between the two terminals V. Since charge is conserved, the charge q is the same on the two capacitors. (If there is $+q$ charge on the top plate of the top capacitor, there is $-q$ charge on the bottom plate. To conserve charge, there is $+q$ charge on the top plate of the bottom capacitor and thus $-q$ charge on the bottom plate.) Then $\frac{1}{C_{eq}} = \frac{V}{q} = \frac{V_1 + V_2}{q} = \frac{V_1}{q} + \frac{V_2}{q} = \frac{1}{C_1} + \frac{1}{C_2}$.

(c) C_4 C_2 C_3

$C_{eq} = (C_4 + (C_1 \parallel (C_2 + C_3))) = \frac{C_4(C_1 + C_2 + C_3) + C_1(C_2 + C_3)}{C_1 + C_2 + C_3}$

2. Capacitance Equivalence

For the structures shown below, assume that the plates have a depth L into the page and a width W and are always a distance d apart.

(a) What is the capacitance of the structure shown below?

\[\text{Diagram of capacitors} \]
Answer:

The capacitance of two parallel plate conductors is given by \(C = \varepsilon \frac{A}{d} \). The cross-sectional area \(A \) is \(WL \), so the capacitance is \(C = \varepsilon \frac{WL}{d} \).

(b) Suppose that we take two such structures and put them next to each other as shown below. What is the capacitance of this new structure?

![Diagram of two parallel plate conductors](image)

Answer:

Here, we have just doubled the width of the capacitor plates. The new capacitance is \(C = \varepsilon \frac{2WL}{d} \). Notice that this is just double the capacitance from the first part.

(c) Now suppose that rather than connecting the together as shown above, we connect them with an ideal wire as shown below. What is the capacitance of this structure?

![Diagram of two parallel plate conductors connected with an ideal wire](image)

Answer:

Intuitively, nothing has changed here since we have just added an ideal wire between two capacitors. Thus, the answer remains \(C = \varepsilon \frac{2WL}{d} \).

(d) Suppose that we now take two capacitors and connect them as shown below. What is the capacitance of the structure?

![Diagram of two parallel plate conductors in series](image)

Answer:

We know that capacitors placed in series follow the parallel rule. Thus, the overall capacitance is half the individual capacitance.

(e) What is the capacitance of the structure shown below?

![Diagram of two parallel plate conductors in series](image)

Answer:

Notice here that we are ignoring the material in the middle. Thus, from a modeling perspective, we can think of this as the original capacitor with the distance between the plates doubled.
3. Current Sources And Capacitors

For the circuits given below, give an expression for $v_{out}(t)$ in terms of I_s, C_1, C_2, and t. Assume that all capacitors are initially uncharged.

(a)

\[
I_s = C_1 \frac{dv_{out}(t)}{dt}
\]

\[
v_{out}(t) = \int \frac{I_s}{C_1} dt = \frac{I_s t}{C_1} + V_0
\]

Since the capacitor is initially uncharged, $V_0 = 0$, so $v_{out}(t) = \frac{I_s t}{C_1}$.

(b)

We can combine the two capacitors into an equivalent capacitor with capacitance $C_1 + C_2$. Again, $V_0 = 0$ because all capacitors are initially uncharged.

\[
v_{out}(t) = \frac{I_s t}{C_1 + C_2} + V_0 = \frac{I_s t}{C_1 + C_2}
\]

(c)

By KCL, the current I_s flowing through C_1 must be the current flowing through C_2. $V_0 = 0$ because all capacitors are initially uncharged.

\[
v_{out}(t) = \int \frac{I_s}{C_2} dt = \frac{I_s t}{C_2} + V_0 = \frac{I_s t}{C_2}
\]
Answer:
Instead of finding v_{out}, let’s first find the voltage $v_{C_{eq}}$ across C_2 and C_3.

To do this, we replace C_2 and C_3 with their equivalent capacitance $C_{eq} = C_2 \parallel C_3 = \frac{C_2 C_3}{C_2 + C_3}$.

From part (b), we know that to solve for $v_{C_{eq}}$, we can find the equivalent capacitance of C_1 and C_{eq} first, which is $C_1 + C_{eq}$. Since the capacitors are initially uncharged, $V_0 = 0$.

$$v_{C_{eq}}(t) = \int \frac{I_s}{C_1 + C_{eq}} \, dt = \frac{I_s t}{C_1 + C_{eq}} + V_0 = \frac{I_s t}{C_1 + C_{eq}}$$

Now that we know that voltage across the equivalent capacitor C_{eq}, we can find the current flowing through the equivalent capacitor C_{eq}.

$$i_{C_{eq}}(t) = C_{eq} \frac{dv_{C_{eq}}(t)}{dt} = \frac{C_{eq} I_s}{C_1 + C_{eq}}$$

Note that the current $i_{C_{eq}}$ is equal to the current flowing through C_3 since C_2 and C_3 were originally connected in series.

$$i_{C_3}(t) = i_{C_{eq}}(t) = \frac{C_{eq} I_s}{C_1 + C_{eq}}$$

Since v_{out} is the voltage across the capacitor C_3, we integrate to find v_{out}. Again, since all capacitors are initially uncharged, $V_0 = 0$.

$$v_{out}(t) = \int \frac{C_{eq} I_s}{C_3 (C_1 + C_{eq})} \, dt = \frac{C_{eq} I_s t}{C_3 (C_1 + C_{eq})} + V_0 = \frac{\frac{C_2 C_3}{C_2 + C_3} I_s t}{C_3 \left(C_1 + \frac{C_2 C_3}{C_2 + C_3} \right)} = \frac{C_2 I_s t}{C_1 C_2 + C_1 C_3 + C_2 C_3}$$