1. A Simple Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

(a) In the above circuit, pick a ground node. Does your choice of ground matter?

 Answer:
 There are two nodes in this circuit and thus two choices for the ground node. The choice of ground does not matter. We will use the ground node shown below:

 ![Ground Node](image)

(b) With your choice of ground, label the node potentials for every node in the circuit.

 Answer:
 Since this circuit only has two nodes, there will only be one additional node potential.

 ![Node Potentials](image)

(c) Label all of the branch currents. Does the direction you pick matter?

 Answer:
 When labeling the currents through branches, the direction you pick does not matter.
(d) Draw the $+/-$ labels on every element. What convention must you follow?

Answer:

When drawing the $+/-$ labels, you must follow the passive sign convention. That is, current flows into the $+$ terminal of every element.

![Diagram](image)

(e) Set up a matrix equation in the form $A\vec{x} = \vec{b}$ to solve for the unknown node potentials and currents. What are the dimensions of the matrix A?

Answer:

$$
\begin{bmatrix}
? & ? & ? \\
? & ? & ? \\
? & ? & ? \\
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
? \\
? \\
? \\
\end{bmatrix}
$$

A will be a 3×3 matrix since there are three unknowns in the circuit, the two currents i_{V_1} and i_{R_1} and the one potential u_1.

(f) Use KCL to find as many equations as you can for the matrix.

Answer:

KCL gives us one equation for the node at the top, namely that $i_{V_1} + i_{R_1} = 0$. Thus, so far our matrix is as follows:

$$
\begin{bmatrix}
1 & 1 & 0 \\
? & ? & ? \\
? & ? & ? \\
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
? \\
? \\
\end{bmatrix}
$$

(g) Use IV relations to find the remaining the equations for the matrix.

Answer:

We can use IV relations to find two more equations. We know that the difference in potentials across the voltage source must be the voltage on the voltage source. We also know that the voltage across the resistor is equal to the current times the resistance. Thus, we have the following equations.

$$
u_1 - 0 = V_1$$

$$
u_1 - 0 = i_1 R_1 \implies \nu_1 - i_1 R_1 = 0$$

Our matrix is then:

$$
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & -R_1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
V_1 \\
0 \\
\end{bmatrix}
$$

(h) Solve the system of equations if $V_1 = 5\, \text{V}$ and $R_1 = 5\, \Omega$.

Answer:
By plugging the given values into the system of equations, we get:

\[
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
u_1
\end{bmatrix} = \begin{bmatrix}-1 \\
1 \\
5
\end{bmatrix}
\]

2. A Slightly More Complicated Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

(a) In the above circuit, pick a ground node. Does your choice of ground matter?

Answer:
There are two nodes in this circuit and thus two choices for the ground node. The choice of ground does not matter. We will use the ground node shown below:

(b) With your choice of ground, label the node potentials for every node in the circuit.

Answer:
Since this circuit only has two nodes, there will only be one additional node potential.

(c) Label all of the branch currents. Does the direction you pick matter?

Answer:
When labeling the currents through branches, the direction you pick does not matter.
(d) Draw the +/− labels on every element. What convention must you follow?

Answer:

When drawing the +/− labels, you must follow the passive sign convention. That is, current flows into the + terminal of every element.

![Image of circuit diagram](image)

(e) Set up a matrix equation in the form \(\mathbf{A}\mathbf{x} = \mathbf{b} \) to solve for the unknown node potentials and currents. What are the dimensions of the matrix \(\mathbf{A} \)?

Answer:

\[
\begin{bmatrix}
\end{bmatrix}
\begin{bmatrix}
i_{I_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix} =
\begin{bmatrix}
? \\
? \\
? \\
? \\
\end{bmatrix}
\]

\(\mathbf{A} \) will be a \(4 \times 4 \) matrix since there are four unknowns in the circuit, the currents \(i_{I_1}, i_{R_1}, \) and \(i_{R_2} \) and the one potential \(u_1 \).

(f) Use KCL to find as many equations as you can for the matrix.

Answer:

KCL gives us one equation for the node at the top, namely that \(i_{I_1} - i_{R_1} - i_{R_2} = 0 \). Thus, so far our matrix is as follows:

\[
\begin{bmatrix}
1 & -1 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
i_{I_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
? \\
? \\
? \\
\end{bmatrix}
\]

(g) Use \(IV \) relations to find the remaining the equations for the matrix.

Answer:

We can use \(IV \) relations to find two more equations. We know that the difference in potentials across the voltage source must be the voltage on the voltage source. We also know that the voltage across the resistor is equal to the current times the resistance. Thus, we have the following equations.

\[
i_{I_1} = I_1
\]
\[
u_1 - 0 = i_{R_1}R_1 \implies u_1 - i_{R_1}R_1 = 0
\]
\[
u_1 - 0 = i_{R_2}R_2 \implies u_1 - i_{R_2}R_2 = 0
\]

Our matrix is then:

\[
\begin{bmatrix}
1 & -1 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & -R_1 & 0 & 1 \\
0 & 0 & -R_2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i_{I_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
I_1 \\
0 \\
0 \\
\end{bmatrix}
\]
(h) Solve the system of equations if $I_1 = 5 \text{ A}$, $R_1 = 5 \Omega$, and $R_2 = 10 \Omega$.

Answer:

By plugging in the values into the system of equations, we get:

$$
\begin{bmatrix}
 i_{f_1} \\
 i_{r_1} \\
 i_{r_2} \\
 u_1
\end{bmatrix}
=
\begin{bmatrix}
 5 \\
 3.3 \\
 1.6 \\
 16.7
\end{bmatrix}
$$

3. Another Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

\[V_1 \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \begin{array}{c}
\backslash \\
R_1 \quad R_2
\end{array}\]

(a) In the above circuit, pick a ground node. Does your choice of ground matter?

Answer:

There are two nodes in this circuit and thus two choices for the ground node. The choice of ground does not matter. We will use the ground node shown below:

\[V_1 \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \begin{array}{c}
\backslash \\
R_1 \quad R_2
\end{array}\]

(b) With your choice of ground, label the node potentials for every node in the circuit.

Answer:

Since this circuit only has two nodes, there will only be one additional node potential.

\[V_1 \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \begin{array}{c}
\backslash \\
R_1 \quad R_2
\end{array}\]

(c) Label all the branch currents. Does the direction you pick matter?

Answer:

When labeling the currents through branches, the direction you pick does not matter.
(d) Draw the $+/−$ labels on every element. What convention must you follow?

Answer:
When drawing the $+/−$ labels, you must follow the passive sign convention. That is, current flows into the + terminal of every element.

(e) Set up a matrix equation in the form $A\vec{x} = \vec{b}$ to solve for the unknown node potentials and currents. What are the dimensions of the matrix A?

Answer:

\[
\begin{bmatrix}
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
? \\
? \\
? \\
? \\
\end{bmatrix}
\]

A will be a 4×4 matrix since there are four unknowns in the circuit, the currents i_{V_1}, i_{R_1}, and i_{R_2} and the one potential u_1.

(f) Use KCL to find as many equations as you can for the matrix.

Answer:

KCL gives us one equation for the node at the top, namely that $i_{V_1} + i_{R_1} + i_{R_2} = 0$. Thus, so far our matrix is as follows:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
? \\
? \\
? \\
\end{bmatrix}
\]

(g) Use IV relations to find the remaining equations for the matrix.

Answer:

We can use IV relations to find two more equations. We know that the difference in potentials across the voltage source must be the voltage on the voltage source. We also know that the voltage across the resistor is equal to the current times the resistance. Thus, we have the following equations.

\[u_1 = V_1\]
\[u_1 - 0 = i_{R_1} R_1 \implies u_1 - i_{R_1} R_1 = 0 \]
\[u_1 - 0 = i_{R_2} R_2 \implies u_1 - i_{R_2} R_2 = 0 \]

Our matrix is then:
\[
\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -R_1 & 0 & 1 \\
0 & 0 & -R_2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
V_1 \\
0 \\
0 \\
\end{bmatrix}
\]

(h) Solve the system of equations if \(V_1 = 5 \text{ V} \), \(R_1 = 5 \Omega \), and \(R_2 = 10 \Omega \).

Answer:
By plugging in the values into the system of equations, we get:
\[
\begin{bmatrix}
i_{V_1} \\
i_{R_1} \\
i_{R_2} \\
u_1 \\
\end{bmatrix}
=
\begin{bmatrix}
-1.5 \\
1 \\
0.5 \\
5 \\
\end{bmatrix}
\]