Electrical Characteristics of MOS Devices

• The MOS Capacitor
 – Voltage components
 – Accumulation, Depletion, Inversion Modes
 – Effect of channel bias and substrate bias
 – Effect of gate oxide charges
 – Threshold-voltage adjustment by implantation
 – Capacitance vs. voltage characteristics

• MOS Field-Effect Transistor
 – I-V characteristics
 – Parameter extraction
1) Revisit EE143 Week#2 Reading Assignment
 - Introduction to IC Devices, www.icknowledge.com
 - Streetman, Chap 3 Energy Band and Charge carriers in Semiconductors.

2) Visit the Device Visualization Website
 http://jas.eng.buffalo.edu/
 and run the visualization experiments of

 1) Charge carriers and Fermi level,
 2) pn junctions
 3) MOS capacitors
 4) MOSFETs
Work Function of Materials

METAL

\[E_f \]
\[E_0 \]
Work function \(= q\Phi \)

SEMICONDUCTOR

\[E_f \]
\[E_v \]
\[E_0 \]

\[q\Phi_M \] is determined by the metal material

\[q\Phi_S \] is determined by the semiconductor material, the dopant type, and doping concentration
Work Function ($q\Phi_M$) of MOS Gate Materials

$E_o =$ vacuum energy level
$E_C =$ bottom of conduction band
$E_f =$ Fermi level
$E_V =$ top of conduction band

$q\chi = 4.15\text{eV}$ (electron affinity)

Examples:
Al = 4.1 eV
TiSi$_2$ = 4.6 eV

$n^+ \text{ poly-Si}$
($E_f = E_C$)

$p^+ \text{ poly-Si}$
($E_f = E_V$)
Work Function of doped Si substrate

* Depends on substrate concentration N_B

\[\Phi_s \text{ (volts)} = 4.15 + 0.56 - |\Phi_F| \]

\[\Phi_s \text{ (volts)} = 4.15 + 0.56 + |\Phi_F| \]

\[|\Phi_F| = \frac{kT}{q} \ln \left(\frac{N_B}{n_i} \right) \]

\[q\chi = 4.15 \text{eV} \]

\[E_o \]

\[\Phi_s \]

\[q\Phi_s \]

\[E_f \]

\[E_i \]

\[E_C \]

\[q\Phi_s \]

\[E_f \]

\[E_i \]

\[E_C \]

\[|q\Phi_F| \]

\[n\text{-type Si} \]

\[p\text{-type Si} \]
The MOS Capacitor

\[V_G = V_{FB} + V_{ox} + V_{si} \]

Oxide capacitance/unit area

\[C_{ox} = \frac{\varepsilon_{ox}}{x_{ox}} \] [in Farads/cm²]
Flat Band Voltage

- V_{FB} is the “built-in” voltage of the MOS:

 $$V_{FB} \equiv \Phi_M - \Phi_S$$

- Gate work function Φ_M:

 Al: 4.1 V; n+ poly-Si: 4.15 V; p+ poly-Si: 5.27 V

- Semiconductor work function Φ_S:

 Φ_S (volts) = 4.15 + 0.56 - $|\Phi_F|$ for n-Si

 Φ_S (volts) = 4.15 + 0.56 + $|\Phi_F|$ for p-Si

- V_{ox} = voltage drop across oxide (depends on V_G)
- V_{Si} = voltage drop in the silicon (depends on V_G)
A) Accumulation: $V_G < V_{FB}$ for p-type substrate

\[V_{Si} \approx 0, \text{ so } V_{ox} = V_G - V_{FB} \]

\[Q_{Si} = \text{charge/unit area in Si} = C_{ox} (V_G - V_{FB}) \]
MOS Operation Modes

• B) Flatband Condition: $V_G = V_{FB}$

No charge in Si (and hence no charge in metal gate)

• $V_{Si} = V_{ox} = 0$

Charge Distribution

M | O | S (p-Si)
C) Depletion: $V_G > V_{FB}$

Depletion Layer thickness

\[x_d = \sqrt{\frac{2 \varepsilon_S V_{Si}}{qN_B}} \]

\[V_G = V_{FB} + \frac{qN_B x_d}{C_{ox}} + \frac{qN_B x_d^2}{2 \varepsilon_s} \]

Note: $N_B x_d$ is the total charge in Si/unit area

Charge Distribution

Depletion layer

(For given V_G, can solve for x_d)
Depletion Mode: Charge and Electric Field Distributions

by Superposition Principle of Electrostatics

\[\rho(x) \]

\[\text{Metal} \quad \rightarrow \quad \text{Oxide} \quad \rightarrow \quad \text{Semiconductor} \]

\[x = x_o + x_d \]

\[x = 0 \]

\[x = x_o \]

\[\pm \rho \]

\[Q' \]

\[-Q' \]

\[E(x) \]

\[\text{Metal} \quad \rightarrow \quad \text{Oxide} \quad \rightarrow \quad \text{Semiconductor} \]

\[x = x_o + x_d \]

\[x = 0 \]

\[x = x_o \]

\[= \]

\[= \]
D) Threshold of Inversion: $V_G = V_T$

$n_{surface} = N_B$ (for p-type substrate)

$=> V_{Si} = 2|\Phi_F|$

This is a definition for onset of strong inversion

$$V_G = V_T = V_{FB} + \frac{\sqrt{2 \varepsilon_s (2|\Phi_F|)qN_B}}{C_{ox}} + 2|\Phi_F|$$
E) Strong Inversion: $V_G > V_T$

$x_{d_{max}} = \sqrt{\frac{4\varepsilon_S|\Phi_F|}{qN_B}}$

$x_{d_{max}}$ is approximately unchanged when $V_G > V_T$

$V_{ox} = \frac{qN_B x_{d_{max}} + |Q'_n|}{C_{ox}}$

$Q'_n \approx -C_{ox}(V_G - V_T)$
Biasing Conditions for p-type Si

Energy band diagram:
- $V_G = V_{FB}$
- $V_G < V_{FB}$
- $V_T > V_G > V_{FB}$
- $V_G > V_T$

Charge diagram:
- Flat band
- Accumulation
- Depletion
- Inversion

Name
Flat band
Accumulation
Depletion
Inversion

Exposed acceptors
Electrons

Professor N Cheung, U.C. Berkeley
MOS Band Diagrams (n-type Si)

Decrease V_G (toward more negative values)
-> move the gate energy-bands up, relative to the Si

- **Accumulation**
 - $V_G > V_{FB}$
 - Electrons accumulate at surface

- **Depletion**
 - $V_G < V_{FB}$
 - Electrons repelled from surface

- **Inversion**
 - $V_G < V_T$
 - Surface becomes p-type
Total Charge Density in Si, Q_s

\[Q_{\text{acc}} = -C_{\text{ox}} (V_G - V_{FB}) \]

\[Q_{\text{dep}} = -qN_A W \]

\[Q_{\text{inv}} = -C_{\text{ox}} (V_G - V_T) \]

\[Q_s = Q_{\text{acc}} + Q_{\text{dep}} + Q_{\text{inv}} \]
Voltage drop = area under E-field curve

For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches
Suggested Exercise

Most derivations for MOS shown in lecture notes are done with p-type substrate (NMOS) as example.

Repeat the derivations yourself for n-type substrate (PMOS) to test your understanding of MOS.
p-Si substrate (NMOS)

Accumulation (holes) \(V_{FB} \)

depletion \(V_T \)

strong inversion (electrons) \(V_G \) (more positive)

n-Si substrate (PMOS)

\(V_G \) (more negative)

Strong inversion (holes) \(V_T \)

depletion \(V_{FB} \)

Accumulation (electrons)
MOS Capacitance Measurement

- V_G is scanned slowly
- Capacitive current due to v_{ac} is measured

$$i_{ac} = C \frac{dv_{ac}}{dt}$$

$$C = \left| \frac{dQ_{GATE}}{dV_G} \right| = \left| \frac{dQ_s}{dV_G} \right|$$
MOS C-V Characteristics (p-type Si)

Ideal C-V curve:

\[
C = \left| \frac{dQ_s}{dV_G} \right|
\]

slope = \(-C_{ox}\)

accumulation depletion inversion
Capacitance in Inversion (p-type Si)

CASE 1: Inversion-layer charge can be supplied/removed quickly enough to respond to changes in the gate voltage. → Incremental charge is effectively added/subtracted at the surface of the substrate.

\[\Delta Q \]

Time required to build inversion-layer charge = \(2N_A \tau_o/n_i \), where \(\tau_o = \text{minority-carrier lifetime at surface} \)

\[
C = \left| \frac{dQ_{\text{inv}}}{dV_G} \right| = C_{ox}
\]
Capacitance in Inversion (p-type Si)

CASE 2: Inversion-layer charge cannot be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth W_d in the substrate.

\[
\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}
\]

\[
= \frac{1}{C_{ox}} + \frac{W_{dm}}{\varepsilon_{Si}}
\]

\[
= \frac{1}{C_{ox}} + \sqrt{\frac{2(2\psi_B)}{qN_A\varepsilon_{Si}}} \equiv \frac{1}{C_{min}}
\]
Capacitor vs. Transistor C-V
(or LF vs. HF C-V)

p-type Si:

MOS transistor at any f
MOS capacitor at low f, or
quasi-static $C-V$

MOS capacitor at high f

V_{FB}
C_{FB}
V_T
C_{min}
$C_{max} = C_{ox}$

accumulation
depletion
inversion

V_G
C-V Characteristic

a) accumulation: \(C_{ox} \)

b) flatband: \(\sim C_{ox} \) (actually a bit less)

c) depletion: \(C_{ox} \) in series with the \(C_{depl} \)

d) threshold: \(C_{ox} \) in series with the minimum \(C_{depl} \)

e) inversion: \(C_{ox} \) (with some time delay!)
Small signal charge response ΔQ due to ΔVG

Accumulation

\[C = C_{ox} \]

Depletion

\[\frac{1}{C} = \frac{1}{C_{ox}} + \frac{x_d}{\varepsilon_s} \]

Inversion

Low frequency

\[C = C_{ox} \]

High frequency

\[\frac{1}{C} = \frac{1}{C_{ox}} + \frac{x_{d_{max}}}{\varepsilon_s} \]