Effect of X_i on Wafer Topography

1. Less oxide grown, less Si consumed
2. More oxide grown, more Si consumed
Factors Influencing Thermal Oxidation

– Temperature
– Ambient Type (Dry O$_2$, Steam, HCl)
– Ambient Pressure
– Substrate Crystallographic Orientation
– Substrate Doping
High Pressure Oxidation

\[
\frac{B}{A} = \frac{C_A}{[N_1(1/k_s+1/h)]} \propto C_A \propto P_G
\]

\[
B = \frac{2DC_A}{N_1} \propto C_A \propto P_G
\]

When \(P_G \) increases, both \(B \) and \(B/A \) will increase. Therefore oxidation rate increases.

1) The oxidation temperature can be reduced if the pressure is increased, to achieve a given oxidation rate
2) To grow a given oxide thickness at same temperature, time can be reduced
High Doping Concentration Effect

Coefficients for dry oxidation at 900°C as function of surface Phosphorus concentration

* highly doped Si has more vacancies
Substrate Orientation Effect

Reason:
(111) surface has more Si bonds than (100) Surface

* difference more obvious for thin oxides

most IC’s made with (100) Si

\[k_s(111) > (k_s(100)) \]
Transmission Electron Micrograph of Si/SiO2 Interface

Amorphous SiO2

Crystalline Si
Thermal Oxide Charges

Figure 4.14 Silicon–silicon dioxide structure with mobile, fixed charge, and interface states (© 1980, IEEE, after Deal).
To minimize Interface Charges Q_f and Q_{it}

- Use inert gas ambient (Ar or N2) when cooling down at end of oxidation step.

- A final annealing step at 400-450°C is performed with 10%H$_2$+90%N$_2$ ambient ("forming gas") after the IC metallization step.
Oxidation with Chlorine-containing Gas

- Introduction of halogen species during oxidation
e.g. add ~1-5% HCl or TCE (trichloroethylene) to O_2
 → reduction in metallic contamination
 → improved SiO_2/Si interface properties

\[\text{M} + \text{Cl} \rightarrow \text{MCl} \]

\(\text{Na}^+ \text{ or K}^+ \text{ in SiO}_2 \text{ are mobile!}\)
Effect of HCl on Oxidation Rate

\[\text{HCl} + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{Cl}_2 \]
SUMMARY of Deal Grove Model

\[X_{ox}^2(t) + A \, X_{ox}(t) = B \, (t + \tau) \]

The growth rate \(\frac{dX_{ox}}{dt} = \frac{B}{A+2X_{ox}} \) slows down as \(X_{ox} \) increases

Dependence of B/A and B on Processing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Linear Constant B/A</th>
<th>Parabolic Constant B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation Pressure</td>
<td>linear with oxygen pressure (actually (\propto P^{0.8}))</td>
<td>linear with oxygen pressure</td>
</tr>
<tr>
<td>Steam versus O(_2)</td>
<td>larger for steam oxidation</td>
<td>larger for steam oxidation</td>
</tr>
<tr>
<td>Si crystal orientation</td>
<td>(B/A(111):B/A(100) = 1.68:1)</td>
<td>independent of orientation</td>
</tr>
<tr>
<td>Dopant type and concentration in Si</td>
<td>increases with dopant concentration</td>
<td>insensitive</td>
</tr>
<tr>
<td>Addition of Cl-containing gas in oxidation ambient</td>
<td>insensitive</td>
<td>increases</td>
</tr>
</tbody>
</table>
Local Oxidation of Si [LOCOS]

- Si$_3$N$_4$ (CVD)
- ~100 Å SiO$_2$ (thermal) - pad oxide to release mechanical stress between nitride and Si.

"bird’s beak"

$\Delta \approx 1.1 - 1.5 \, X_{ox}$
Si substrate is etched to a depth of ~1/2 the intended grown oxide thickness.

Grown oxide surface is approximately planar with substrate surface.
Dopant Redistribution during Thermal Oxidation

Segregation Coefficient

\[m \equiv \frac{\text{equilibrium dopant conc. in Si}}{\text{equilibrium dopant conc. in SiO}_2} \]

Fixed ratio

\[m = \frac{C_1}{C_2} \]

(can be >1 or <1)
Four Cases of Interest

(A) \(m < 1 \) and dopant \textit{diffuses slowly} in \(\text{SiO}_2 \)

\[
\begin{array}{c}
\text{SiO}_2 \\
\includegraphics[width=0.5\textwidth]{diagram.png} \\
\text{Si}
\end{array}
\]

\(C_2 \) \quad \text{e. g. } B \ (m = 0.3)

\(C_B \)

\textit{flux loss through \text{SiO}_2 \ surface not considered here.}

\[\Rightarrow \quad \text{B will be depleted near Si interface.}\]
(B) $m > 1$, slow diffusion in SiO_2.

\Rightarrow dopant piling up near Si interface for P, As & Sb
(C) \(m < 1 \), fast diffusion in \(\text{SiO}_2 \)

\[\begin{align*}
\text{SiO}_2 & \quad \text{Si} \\
C_2 & \quad C_B
\end{align*} \]

\text{e.g.} \quad B, \ \text{oxidize with presence of } H_2
(D) $m > 1$, fast diffusion in SiO_2

\[\text{SiO}_2 \quad \text{Si} \]

C_1, C_2, C_B

e.g. Ga ($m=20$)
Thin Oxide Growth

The Deal-Grove model provides excellent agreement with experimental data except for thin (<20 nm) SiO₂ grown in O₂.

When \(X_{ox} \) becomes large, additional term becomes zero.

\[
\frac{dX_{ox}}{dt} = \frac{B}{A+2X_{ox}} + Ce^{\frac{-X_{ox}}{L}}
\]

\(L \approx 7 \text{ nm} \)

\(\propto t^{1/2} \)

\(\propto t \)

\(\propto t \)

25 nm

=> For thick oxides grown in O₂ on bare Si, assume \(X_i = 25 \text{ nm} \) when using the D-G equations.
Polycrystalline Si Oxidation

Poly-Si

grain boundaries (have lots of defects).

Overall growth rate is higher than single-crystal Si

fast

slower

roughness with X_{ox}

SiO$_2$
Schematic Illustration of Thermal Oxidation of Si-containing materials in which SiO2 is the final reaction product.
2-Dimensional oxidation effects

Mechanical stress created by SiO$_2$ volume expansion also affects oxide growth rate (if interested, see Kao et al, International Electron Devices Meeting Digest, 1985, p.388)