Section 8: Metallization

Jaeger Chapter 7

EE143 – Ali Javey

EE143 – Ali Javey

Interconnect RC Time Delay

Interconnect Resistance $\mathbf{R}_{\mathbf{I}} = \mathbf{R}/L = \rho / (W_{Al}T_{Al})$

 $\label{eq:connect-Substrate} \begin{array}{l} \mbox{Interconnect-Substrate} \\ \mbox{Capacitance} \\ \mbox{C}_V \ \equiv \mbox{C}/\mbox{L} = \mbox{W}_{Al} \ \mbox{ϵ_{ox}} \ / \ \mbox{T}_{ox} \end{array}$

 $\begin{array}{l} \mbox{Interconnect-Interconnect}\\ \mbox{Capacitance}\\ \mbox{C}_L \ \equiv C/L = T_{Al} \ \epsilon_{ox} \ / \ S_{Al} \end{array}$

* Values per unit length L

Interconnect Requirements

- low ohmic resistance
 - interconnects material has low resistivity
- low contact resistance to semiconductor device
- reliable long-term operation

Resistivity of Metals

TABLE 7.1 Bulk Resi	stivity of Metals ($\mu\Omega$ -cm)	
Ag: Silver Al: Aluminum Au: Gold Co: Cobalt Cu: Copper Mo: Molybdenum	1.6 2.65 2.2 6 1.7 5	Commonly Used Metals Aluminum Titanium Tungsten Copper
Ni: Nickel Pd: Paladium Pt: Platinum Ti: Titanium W: Tungsten	7 10 10.6 50 5	Less Frequently Utilized Nickel Platinum Paladium

Source: WebElements [http://www.webelements.com]

Ohmic Contact Formation

- Aluminum to p-type silicon forms an ohmic contact
 [Remember Al is p-type dopant]
- Aluminum to n-type silicon can form a rectifying contact (Schottky barrier → vdiode)
- Aluminum to n+ silicon yields a tunneling contact

- Silicon absorption into the aluminum results in aluminum spikes
- Spikes can short junctions or cause excess leakage
- Barrier metal deposited prior to metallization
- Sputter deposition of Al 1% Si

Alloy to Obtain Very Low Contact Resistivity Specific Contact Resistivity $\rho_c = 1.2 x 10^{-6} \Omega - cm^2$ Contact Resistance R_C $R_c = \frac{\rho_c}{A}$ A = contact area

EE143 – Ali Javey

Electromigration

High current density causes voids to form in interconnections

"Electron wind" causes movement of metal atoms

Copper added to aluminum to improve lifetime (Al, 4% Cu,

$$MTF \propto \frac{1}{J^2} \exp\left(\frac{E_A}{kT}\right)$$

J =current density

 E_A = activation energy

MTF = mean time to failure

Heavier metals (e. g. Cu) have lower activation energy

Metal Deposition Techniques

- Sputtering has been the technique of choice
 - high deposition rate
 - capability to deposit complex alloy compositions
 - capability to deposit refractory metals
 - uniform deposition on large wafers
 - capability to clean contact before depositing metal
- CVD processes have recently been developed (*e.g.* for W, TiN, Cu)
 - better step coverage
 - selective deposition is possible
 - plasma enhanced deposition is possible for lower deposition temperature

Metal CVD Processes

TiN

- used as barrier-metal layer
- deposition processes:

$$6\text{TiCl}_4 + 8\text{NH}_3 \rightarrow 6\overline{\text{TiN}} + 24\text{HCl} + \text{N}_2$$
$$2\text{TiCl}_4 + 2NH_3 + H_2 \rightarrow 2\overline{\text{TiN}} + 8\text{HCl}$$
$$2\text{TiCl}_4 + N_2 + 4H_2 \rightarrow 2\overline{\text{TiN}} + 8\text{HCl}$$

EE143 – Ali Javey

EE143 – Ali Javey

EE143 – Ali Javey

EE143 – Ali Javey

Porous low-k dielectric examples

Materials	Dielectric constant
TEOS* – based glass [9]	4.2
Fluorinted high-density plasma oxide (F-HDP) [10]	3.5 - 3.6
Nanoporous silica [11]	1 - 2.7
Fluorinated Amorphous carbon films [12-13]	2.3 - 2.4
Hydrophobic porous SOG (HPS) [14]	2.5
Xerogels & aerogels [4,15-17]	1.3 – 3.0
Air [9]	1.0 - 2.0