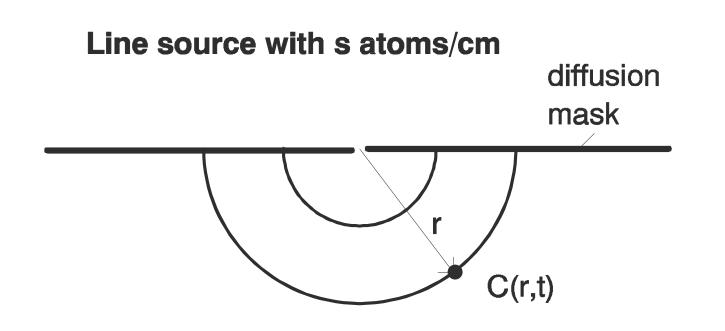
2-Dimensional Diffusion with constant D

Example 1 Drive-in from line source with s atoms/cm

Diffusion Equation in *cylindrical coordinates*

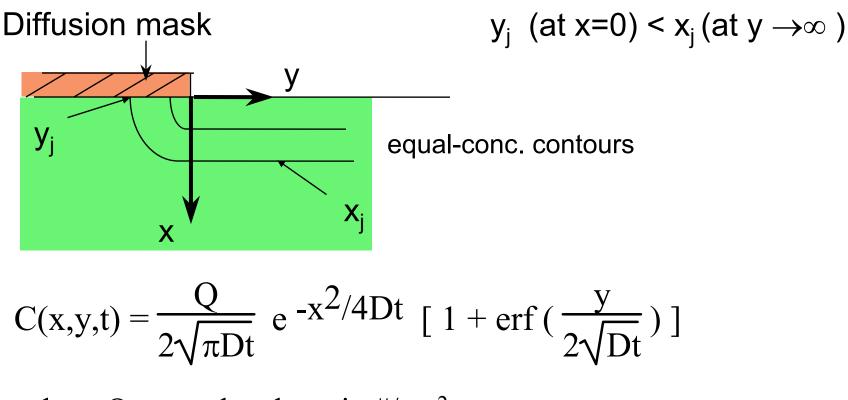
$$\therefore C(r, t) = \frac{s}{2\pi Dt} e^{-r^2/4Dt}$$

 $\frac{C}{2} + \frac{D\partial C}{r \partial r} = \frac{\partial C}{\partial t}$



Two-Dimensional Drive-in Profile (cont.)

Example 2 : Semi-Infinite Plane Source

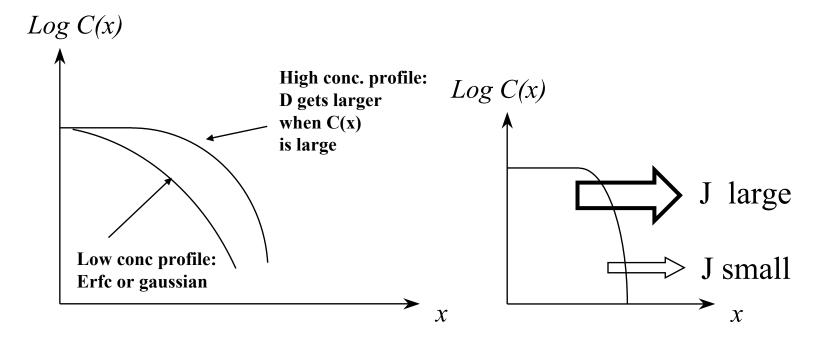


where $Q = predep \text{ dose in } \#/cm^2$

Rule of Thumb : y_i ~0.7-0.8 x_i

High Concentration Diffusion Effects

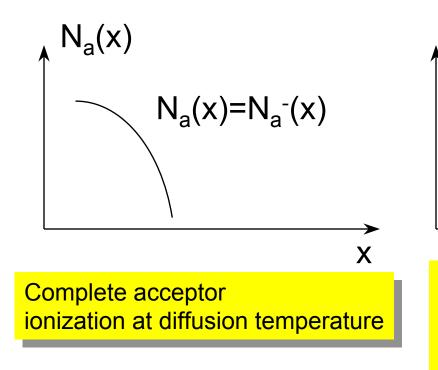
- 1) E-Field Enhanced Diffusion
- 2) Charged point defects enhanced diffusion

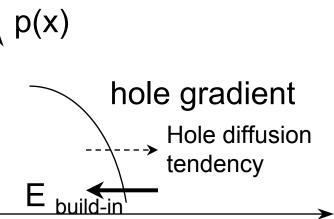


* C(x) looks "flatter" at high conc. regions

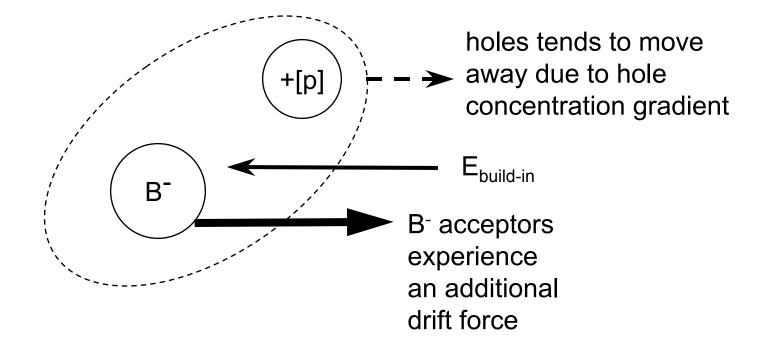
(1) Electric-field Enhancement

Example: Acceptor Diffusion





At thermal equilibrium, hole current =0 Hole gradient creates build-in electric field to counteract the hole diffusion tendency

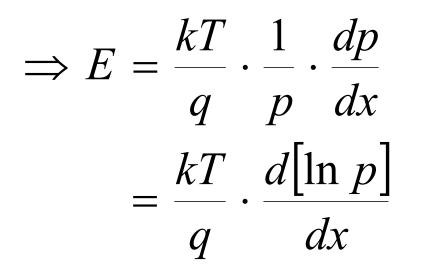


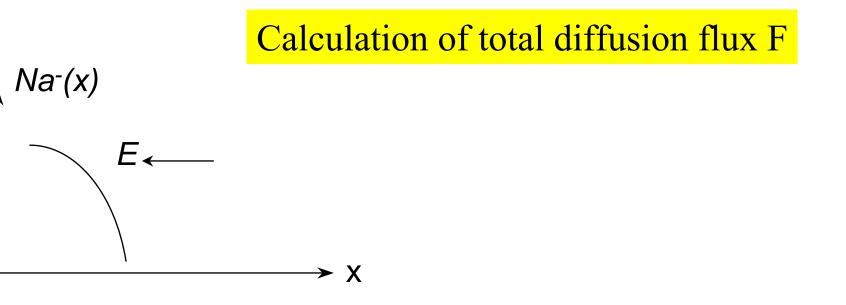
Enhanced Diffusion for B⁻ acceptor atoms

Calculation of build-in Electric Field E

$$J_p = q \cdot \mu_p \cdot p \cdot E - qD_p \cdot \frac{dp}{dx} = 0$$

at thermal equilibrium.





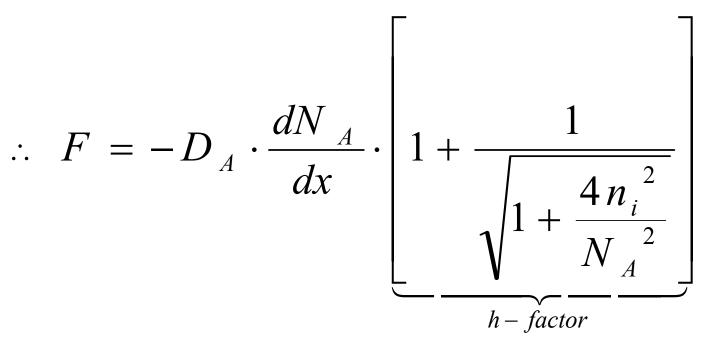
Total acceptor atom flux = (diffusion + drift) components

$$F = -D_A dN_A/dx - \mu_A \cdot E \cdot N_A$$

Since $\mu_A = D_A/[kT/q]$ from Einstein's Relationship

$$F = -D_A \cdot \left[\frac{dN_A}{dx} + \frac{d[\ln p]}{dx} \cdot N_A \right]$$

From (1) $p = n + N_A^-$ charge Neutrality
(2) $pn = n_i^2$ Law of Mass Action
(1) & (2) $\therefore p = \frac{N_A + \sqrt{N_A^2 + 4n_i^2}}{2}$
 $\therefore \frac{d[\ln p]}{dx} = \frac{dN_A}{dx} \cdot \frac{1}{\sqrt{N_A^2 + 4n_i^2}}$



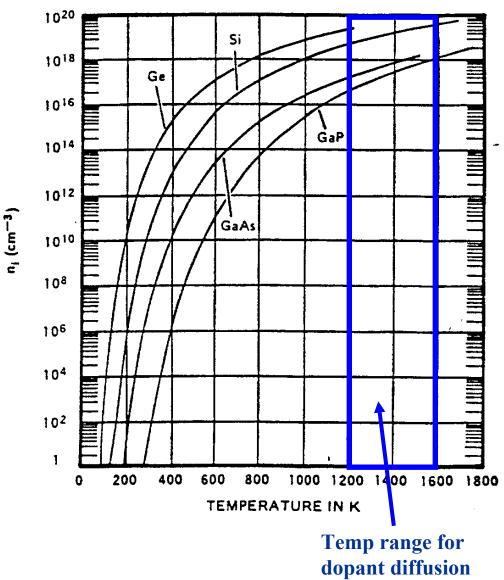
If $n_i >> N_A$ $h \to 1$ low dopant conc. $n_i << N_A$ $h \to 2$ high dopant conc.

Value of h depends on concentration N_A

Intrinsic Carrier Concentration n_i

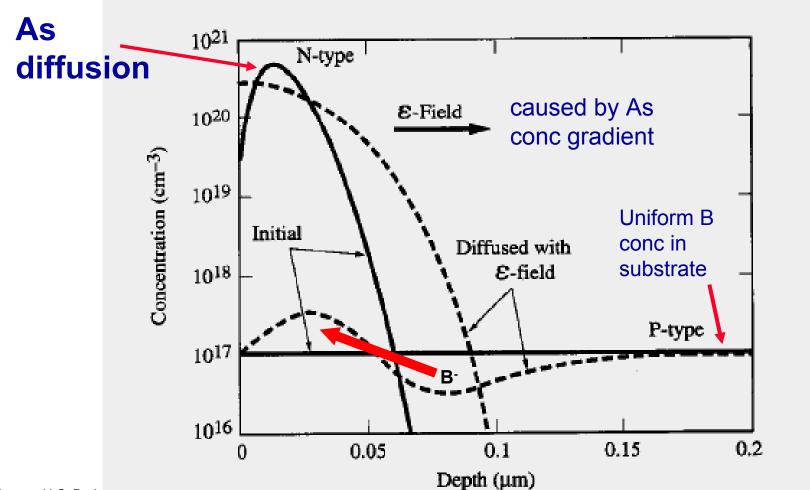
$$\underbrace{\underline{Si}}_{n_{i}} = 3.9 \times 10^{16} \mathrm{T}^{3/2} \mathrm{e}^{-\frac{0.605 \mathrm{eV}}{\mathrm{kT}}} / \mathrm{cm}^{3}$$

If n or p > n_i(T_{diffusion}), we will expect to observe high concentration diffusion effects.

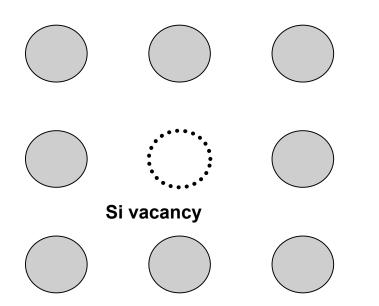


E-Field Effect Example

How the uniform substrate concentration is perturbed by E-field of diffusion specie

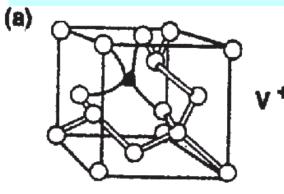


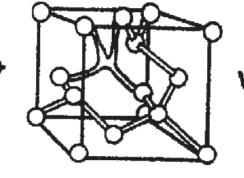
(2) Diffusion Enhanced by Charged Point Defects (e.g. Vacancies)

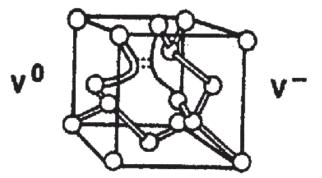


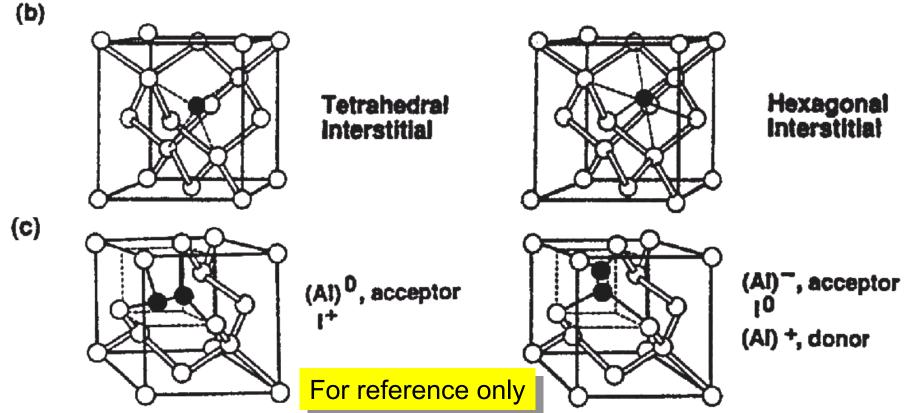
 V° = neutral V^{+} = + vacancy V^{-} = - vacancy $V^{=}$ = - - vacancy

Possible Point Defect Configurations









Professor N Cheung, U.C. Berkeley

How processing steps affect point defect concentrations

• Neutral interstitial and vacancy point defects present at thermal equilibrium

At 1000°C,
$$C_{lo}^* \sim 10^{12} / cm^3$$

 $C_{Vo}^* \sim 10^{13} / cm^3$

• **Charged** Point Defects enhanced by heavy doping; total point defect concentrations enhanced by ~10x

- •Point defects Injected by interfaces during oxidation (total point concentrations enhanced by ~10x)
- Implantation collisions (total defect concentrations enhanced by ~ 1000x)

Derivation of charged vacancy concentration

Law of Mass Action

For the reaction : $a \bullet A + b \bullet B \leftrightarrow c \bullet C$

[] denotes
concentration
K_c = equilibrium
Constant at Temp
T

1) Negatively charged vacancies $V^{o} + r \cdot electrons \leftrightarrow V^{-r} (r = 1,2,3...)$ $\kappa_{c} = \frac{[V^{o}] n^{r}}{[V^{-r}]} = \frac{[V^{o}] n_{i}^{r}}{[V_{i}^{-r}]}$ $\frac{[V^{-r}]}{[V_{i}^{-r}]} = [\frac{n}{n_{i}}]^{r}$ same K_{c} for undoped Si

where n = electron concentration,

[] denotes the concentrations,

subscript i denotes condition for intrinsic Si

2) Positively charged vacancies $V^{o} + r \bullet holes \leftrightarrow V^{+r} (r = 1, 2, 3...)$

$$\frac{[V^{+r}]}{[V_i^{+r}]} = \left[\frac{p}{n_i}\right]^r = \left[\frac{n_i}{n}\right]^r$$

p =hole concentration

Charged Vacancy Enhanced Diffusion

$$D_{\text{total}} = D^{o} + D_{i}^{+} \cdot \left(\frac{p}{n_{i}}\right) + D_{i}^{-} \cdot \left(\frac{n}{n_{i}}\right) + D_{i}^{-} \cdot \left(\frac{n}{n_{i}}\right)^{2} + \dots$$

Why each diffusivity written with n_i as normalization factor ?

Consider the +charge vacancy first , D⁺ \propto [V⁺]. From Law of Mass Action: [V+] \propto p Therefore , D⁺ \propto p and can be written as D⁺ = K• p where K is a proportionality constant

Let us multiply K by n_i and call it D_i^+ , then $D^+ = D_i^{+\bullet}$ (p / n_i) The physical meaning of D_i^+ is diffusivity D^+ for undoped silicon because $p = n_i$ for undoped silicon

Similarly, D_i^- and $D_i^=$ are diffusivity values for undoped Si due to –charge and = charge vacancies

Charged Vacancy Enhanced Diffusion

$$D_{v} = D^{o} + D^{+} + D^{-} + D^{=} + \dots$$
$$= D^{o} + D_{i}^{+} \cdot \left(\frac{p}{n_{i}}\right) + D_{i}^{-} \cdot \left(\frac{n}{n_{i}}\right) + D_{i}^{=} \cdot \left(\frac{n}{n_{i}}\right)^{2} + \dots$$

$$D^{o} = D_{io} \exp(-E_{ia}/kT)$$

$$D_{i}^{+} = D_{o}^{+} \exp(-E_{a}^{+}/kT)$$

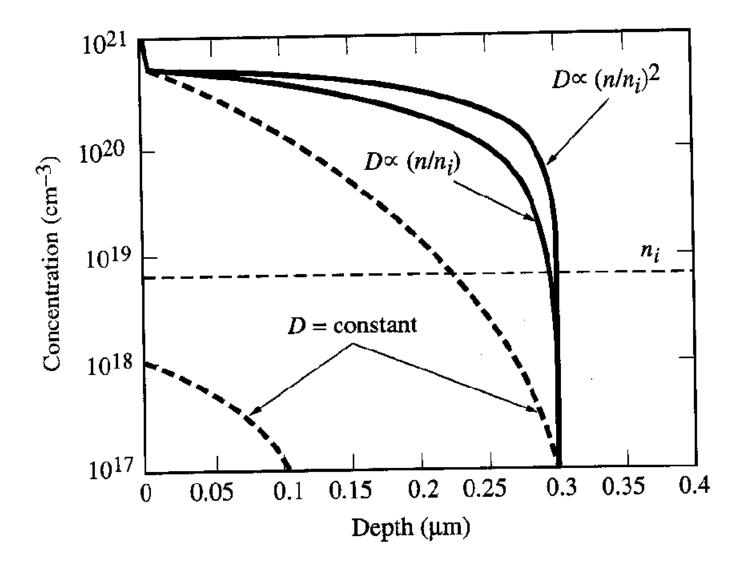
$$D_i^{-} = D_o^{-} \exp(-E_a^{-}/kT)$$

$$D_i^{=} = D_o^{=} \exp(-E_a^{=}/kT)$$

- <-- diffusion coefficient for diffusion via neutral vacancies
- <-- diffusion coefficient for diffusion via singly positively charged vacancies
 - <-- diffusion coefficient for diffusion via singly negatively charged vacancies
- <-- diffusion coefficient for diffusion via doubly negatively charged vacancies

Note that $p/n_i = n/n_i = 1$ for intrinsic (i.e. undoped) material!

Example : High Concentration Arsenic diffusion profile becomes "box-like"



Summary of High-Concentration Diffusion

First, Check if doping concentration is $> n_i(T)$ or $< n_i(T)$

If doping conc < n_i: D= D^o Use constant diffusivity solutions (profile is erfc or half-gaussian)

If doping conc > n_i:

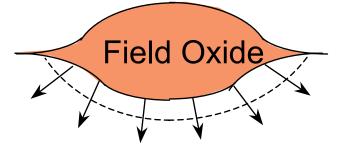
Use $D = D_v = h [D^\circ + D^+ + D^- + D^= + ...]$ (Solution requires numerical techniques)

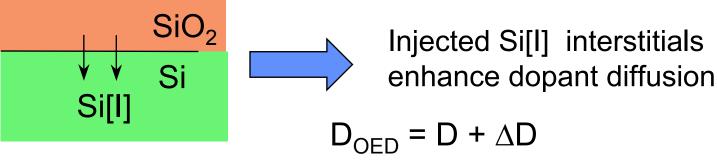
Oxidation Enhanced Diffusion (OED)

Diffusivity is enhanced for B and P underneath a growing oxide

Example:

Channel-stop implant diffuses faster during field oxidation

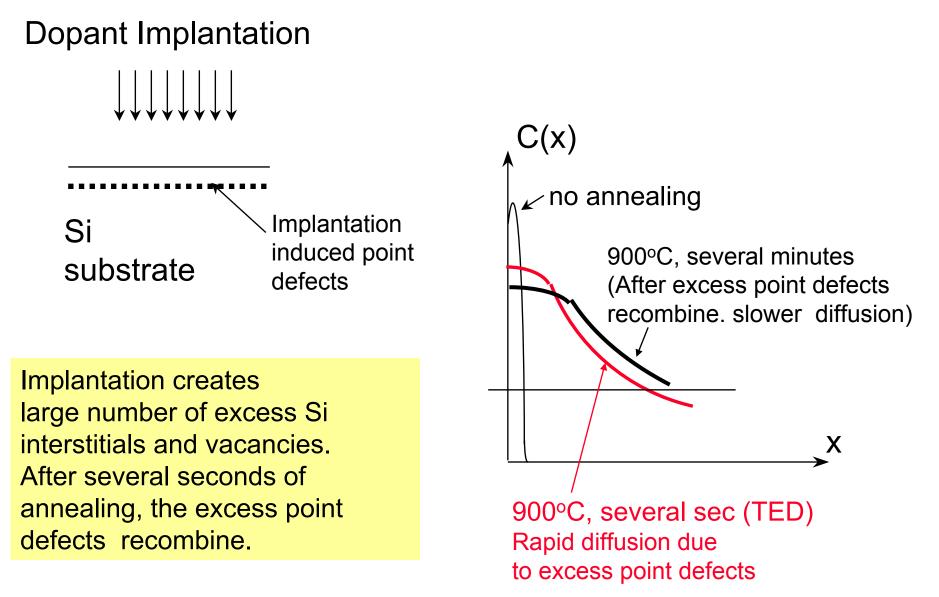




 $\Delta D \propto [dX_{ox}/dt]^n$ where 0.4 < n < 0.6

Note: The dopant **Sb** shows retarded diffusivity during oxidation => it diffuses primarily via the vacancy mechanism

Transient Enhanced Diffusion (TED)



Junction Depth versus post-implantation annealing time

