Electrical Resistance

where ρ is the *electrical resistivity*

Resistivity Range of Materials

Adding parts/billion to parts/thousand of "dopants" to pure Si can change

Si can change resistivity by 8 orders of

magnitude !

Lecture 3

The Si Atom

The Si Crystal

"diamond" structure

High-performance semiconductor devices require defect-free crystals

Carrier Concentrations of Intrinsic (undoped) Si

Purity of Device-Grade Si wafer

99.99999999 % (so-called "eleven nines") !!

Maximum impurity allowed is equivalent to 1 mg of sugar dissolved in an Olympic-size swimming pool.

Dopants in Si

By <u>substituting</u> a Si atom with a special impurity atom (**Column V** or **Column III** element), a conduction electron or hole is created.

Energy Band Description of Electrons and Holes Contributed by Donors and Acceptors

Professor N Cheung, U.C. Berkeley

Semiconductor with both acceptors and donors has 4 kinds of charge carriers

Charge Neutrality Condition

Valid for homogeneously doped semiconductor at thermal equilibrium

Even N_A is not equal to N_D , microscopic volume surrounding any position x has zero net charge

electron-hole pair due to transition from valence band to conduction band

How to Calculate Electron and Hole Concentrations for homogeneous Semiconductor

- *n*: electron concentration (cm^{-3})
- p: hole concentration (cm⁻³)
- N_D : donor concentration (cm⁻³)

 N_A : acceptor concentration (cm⁻³)

Assume completely ionized

1) Charge neutrality condition: $N_{D} + p = N_{A} + n$

2) At thermal equilibrium, $np = n_i^2$ ("Law of Mass Action")

$$n = \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$$
$$p = \frac{N_A - N_D}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}$$

Note: Carrier concentrations depend on **NET** dopant concentration $(N_D - N_A)$!

N-type and P-type Material

If $N_D >> N_A$ (so that $N_D - N_A >> n_i$): $n \cong N_D - N_A$ and $p \cong \frac{{n_i}^2}{N_D - N_A}$ $n >> p \rightarrow$ material is "n-type" If $N_A >> N_D$ (so that $N_A - N_D >> n_i$):

 $p \cong N_A - N_D$ and $n \cong \frac{n_i^2}{N_A - N_D}$ $p >> n \rightarrow$ material is "p-type"

Carrier Drift

 When an electric field is applied to a semiconductor, mobile carriers will be accelerated by the electrostatic force. This force superimposes on the random thermal motion of carriers:

E.g. Electrons *drift* in the direction opposite to the *E*-field \rightarrow Current flows

Average *drift velocity* =
$$|v| = \mu E$$

Carrier mobility

Carrier Mobility

- Mobile carriers are always in random thermal motion. If no electric field is applied, the average current in any direction is zero.
 - Mobility is reduced by
 - collisions with the vibrating atoms
 - "phonon scattering"

- deflection by ionized impurity atoms

Carrier Mobility μ

Mobile charge-carrier drift velocity is proportional to applied *E*-field:

$$|v| = \mu E$$

Professor N Cheung, U.C. Berkeley

Electrical Conductivity σ

When an electric field is applied, current flows due to drift of mobile electrons and holes:

electron current density:

$$J_n = (-q)nv_n = qn\mu_n E$$

hole current density:

$$J_p = (+q)pv_p = qp\mu_p E$$

total current density:

$$J = J_n + J_p = (qn\mu_n + qp\mu_p)E$$
$$J = \sigma E$$

conductivity

$$\sigma \equiv qn\mu_n + qp\mu_p$$

Electrical Resistivity ρ

$$\rho = \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p}$$

$$\rho \approx \frac{1}{qn\mu_n} \quad \text{for n-type}$$

$$\rho \approx \frac{1}{qp\mu_p} \quad \text{for p-type}$$
Unit: ohm-cm)
Note: This plot does not

<u>Note</u>: This plot does not apply for compensated material!

Example Calculation

Consider a Si sample doped with 10¹⁶/cm³ Boron. What is its **electrical resistivity**?

<u>Answer:</u>

N_A = 10¹⁶/cm³, N_D = 0 (N_A >> N_D → p-type)
→ p ≈ 10¹⁶/cm³ and n ≈ 10⁴/cm³

$$\rho = \frac{1}{qn\mu_n + qp\mu_p} \cong \frac{1}{qp\mu_p}$$

$$= \left[(1.6 \times 10^{-19})(10^{16})(450) \right]^{-1} = 1.4 \,\Omega - \text{cm}$$
From μ vs. (N_A + N_D) plot

Example: **Dopant Compensation**

Consider the same Si sample (with 10¹⁶/cm³ Boron), doped *additionally* with 10¹⁷/cm³ Arsenic. What is the new resistivity?

<u>Answer:</u>

$$N_{A} = 10^{16}/\text{cm}^{3}, N_{D} = 10^{17}/\text{cm}^{3} (N_{D} >> N_{A} \rightarrow \text{n-type})$$

$$\Rightarrow n \approx 9 \times 10^{16}/\text{cm}^{3} \text{ and } p \approx 1.1 \times 10^{3}/\text{cm}^{3}$$

$$\rho = \frac{1}{qn\mu_{n} + qp\mu_{p}} \cong \frac{1}{qn\mu_{n}}$$

$$= \left[(1.6 \times 10^{-19})(9 \times 10^{16})(600) \right]^{-1} = 0.12 \,\Omega - \text{cm}$$

* The sample is converted to n-type material by adding more donors than acceptors, and is said to be "compensated".

Professor N Cheung, U.C. Berkeley

Summary of Doping Terminology

intrinsic semiconductor: undoped semiconductor

extrinsic semiconductor: doped semiconductor

donor: impurity atom that increases the electron concentration group V elements (P, As)in Si

acceptor: impurity atom that increases the hole concentration group III elements (B, In) in Si

<u>**n-type</u>** material: semiconductor containing more electrons than holes <u>**p-type**</u> material: semiconductor containing more holes than electrons</u>

<u>majority carrier</u>: the most abundant mobile carrier in a semiconductor <u>minority carrier</u>: the least abundant mobile carrier in a semiconductor

<u>mobile carriers</u>: Charge carriers that contribute to current flow when electric field is applied.

Professor N Cheung, U.C. Berkeley

Sheet Resistance R_S $R = \rho \frac{L}{Wt} = R_s \frac{L}{W}$

 R_s is the resistance when W = L (unit in ohms/square)

$$\mathbf{R}_{s} \equiv \frac{\rho}{t}$$
 if ρ is independent of depth x

- The *R_s* value for a given layer (*e.g.* doped Si, metals) in an IC or MEMS technology is used
 - for design and layout of resistors
 - for estimating values of parasitic resistance in a device or circuit

Professor N Cheung, U.C. Berkeley

EE143 F05

Electrical Resistance of Layout Patterns

Lecture 3

• The *Four-Point Probe* is used to measure R_s

- 4 probes are arranged in-line with equal spacing \boldsymbol{s}
- 2 outer probes used to flow current *I* through the sample
- 2 inner probes are used to sense the resultant voltage drop V with a voltmeter

For a *thin* layer (
$$t \le s/2$$
), $R_s = \frac{4.532V}{I}$

If ρ is known, then R_s measurement can be used to determine *t*

For derivation, see EE143 Lab Manual http://www-inst.eecs.berkeley.edu/~ee143/fa05/lab/four_point_probe.pdf

Electron mobility vs. T

For reference only

Hole mobility vs. T

Lecture 3

Professor N Cheung, U.C. Berkeley