Discussion 7
Wednesday, March 13, 2013 3:11 PM
HW - Problem 2

$$
\begin{gathered}
V_{0} \quad \frac{V_{0}}{V_{\text {in }}}=\frac{A(s)}{1+\beta A(s)} \otimes \begin{array}{l}
\text { general } \\
@_{D C}=\frac{A_{0}}{1+\beta A_{0}} \approx \frac{1}{\beta} \\
\beta(s)=A_{0} \gg 1
\end{array}
\end{gathered}
$$

$$
A(s)=\frac{A_{0}}{\left(1+s w_{p_{1}}\right)\left(1+\frac{s}{w_{p_{2}}}\right)}=P(s) \text { denominator }
$$

$$
\frac{V_{0}}{V_{\text {in }}}=\frac{A_{0} / P(s)}{1+\beta A_{0} / P(s)}=\frac{A_{0}}{P(s)+\beta A_{0}}=\frac{A_{0}}{\left(1+s / w_{p_{1}}\right)\left(1+s / w_{p_{2}}\right)+\beta A_{0}}
$$

$W_{p_{2}}=100 \omega_{p_{1}}$
(s) Low frequencies,
$\left(s / w_{p_{2}} \ll 1\right)$

$$
=\frac{A_{0}}{\left(1+s / w_{p_{1}}\right)+\beta A_{0}} \rightarrow \text { pole is shifted by }\left(1+\beta A_{0}\right) \text {. }
$$

@ Higher Frequencies ($s \omega_{p_{1}} \gg 1$)

$$
\begin{aligned}
\frac{v_{0}}{v_{i n}} & =\frac{A_{0}}{\frac{s}{\omega_{p 1}}\left(1+\frac{s}{\omega_{p 2}}\right)+\beta A_{0}} \\
& =\frac{A_{0}\left(/ \frac{s^{2}}{\omega_{p} w_{p 2}}+\beta A_{0}\right)}{1+\frac{s}{\omega_{p 1} \beta A_{0}+s^{2}} \omega_{p 2}}
\end{aligned}
$$

Problem 5: $W=10 \mu \mathrm{~m}$

$$
\begin{array}{cc}
\text { Telescopic Opamps } & \frac{A_{0}}{1+\beta A_{0}}= \\
\text { Op-Amps } & \text { Main } \\
\text { - High, Gainllor }
\end{array}
$$

op-Amps

- High Gain $\left(10-10^{5}\right)$
up until the 80 s
Designed as building blocks
\rightarrow find the ideal op-amp
this, while still produced many Good designs, \rightarrow not done anymore
Today
- Multidimensional Optimization
- Gain
- Speed - (BW)
- Power
- insensitive to Variation (robust)
- Sensitivity - dynamic Range -linearity
- Output Swing
\rightarrow size, power, speed
\rightarrow fully differential
One Stage

$$
\begin{aligned}
& \begin{array}{l}
\text { gain }=g_{m}\left(r_{\text {on }} \| r_{\text {op }}\right) \\
\text { Max Gait }
\end{array} \\
& \text { Max gain } \sim 20 \\
& V_{\text {in, }} \text { min }=V_{\text {css }}+V_{g s 1} \\
& V_{g s}=1 \mathrm{~V}, \quad V_{\text {th }}=0.7 \mathrm{~V} V_{o v}=0.3 \mathrm{v} \\
& V_{\text {in }} \text {, min }=1.3 \mathrm{~V} \\
& V_{\text {in, }} \text { max }=V_{D D}-\left|V_{g s 3}\right|+V_{T n_{1}} \\
& V_{\text {in, }} \text { max }=3 v-1 v+.7=2,7 v
\end{aligned}
$$

Telescopic Opamp
$1 \quad$ cascode

I telescopic $1 \underset{\text { cascade }}{\text { UNarm }}$

Output Swing

$$
2\left(V_{D D}-\left(V_{O D}+V_{O D 3}+\left|V_{O D 5}\right|+\left|V_{O D 6}\right|\right)\right)
$$

differtial

$$
\left.g_{a i n}=g_{m N}\left[\left(g_{m N} r_{o n}{ }^{2}\right)\| \| g_{p} r_{o p}^{2}\right)\right]
$$

Like high Swing Current "Strongly" Limit input range
Rarely used as a unity gain butter gain ~ 1500 with a single gastage

