Lecture 10: High Swing Current Sources II

- **Announcements:**
 - This is the make-up lecture for yesterday's lecture
 - Reminder: Lab#2 starts next week
 - No Monday lab section next week due to holiday
 - Monday lab sections will start Lab#2 Monday the week after next

- **Lecture Topics:**
 - High Swing Current Sources (cont.)
 - Current Source Matching Considerations
 - Op Amp Review

- **Last Time:**
 - Looking for current sources that maximize the output swing available for an amplifier

Problem: Not that easy to get an exact level shift.
\[
V_{\text{out}} = \frac{2I_D}{\sqrt{\frac{1}{2}f_C^2}}
\]

\[
V_{\text{in}} - V_{\text{out}} = V_{\text{in}} + V_T - V_T - \frac{V_{\text{in}}}{R_S}
\]

Problem: Don't like this.
\[
\left(\frac{V_T}{2} \right)_S \text{ must be big to send } V_{\text{out}} \to 0 \]

\[
\text{if not } V_{\text{in}} < V_{\text{out}} \text{ then } \text{Bad!}
\]

Any other option: just accept a \(V_T + V_{\text{out}} \) level shift.
The circuit:

\[I_{D3} = \frac{1}{2} \frac{1}{L_{M1}} \left(\frac{W}{L} \right)^2 (V_{0V3})^2 \]

\[I_{D4} = \frac{1}{2} \frac{W_{M1}}{L_{M1}} (\frac{W}{L})_4 (2V_{0V3})^2 \]

\[X = \frac{W_{M1}}{L_{M1}} (\frac{W}{L})_5 (V_{0V3})^2 = \frac{1}{2} \frac{1}{L_{M1}} \left(\frac{W}{L} \right)^2 (2V_{0V3})^2 \]

\[\left(\frac{W}{L} \right)_4 = \frac{1}{4} \left(\frac{W}{L} \right)_3 \]

\[\left(\frac{W}{L} \right)_5 = \left(\frac{W}{L} \right)_2 \left(\frac{W}{L} \right)_3 \]

... and \(\left(\frac{W}{L} \right)_6 \)

Problem: Body effect in \(M_4, M_5, M_2 \)

Will increase their \(V_t \)!
High Swing Current Sources II

Problem:
- $V_{S3} = 0V$? $V_{T3} < V_{T2}$
- $V_{T2} = V_{DD}$

Analysis:
- $V_{T2} + V_{Ch} = V_{T2} + V_{Ch} + V_{DD}$
- $V_{Ch} + V_{DD} = V_{DD}$

Solution:
1. Tie the wells of $M4, M5, M6$ to their sources.
2. Bias $M4$ so that $V_{GS4} > V_{t2} + 2V_{NV}$
 - $V_{GS4} = V_{t2} + 2V_{NV}$

Note:
- $M1$ is not saturated
- $V_D = \frac{V}{2} \mu A_{CN}(V_{DD} - V_{t2})^2 (1 + \lambda V_{DD})$

Conclusion:
- Use an alternate binary scheme.
Alternate Binary Scheme for Cascade

want only V_{OV} across M_3 to make it a V_{ON}:

- **Problem:** Need V_{BSA1} and V_{BSA2}
- **Solution:** $V_{BSA1} = V_{t_1 + 2V_{OV}}$

Resistor V_{BSA2} Consideration:

- **Goal:** Current Source
- **Constraint:** V_{BSA2}

Size R_b so that $I_{R_b} = V_{t_6}$

Issue:

1. I_{R_b} not all that well controlled.
2. Resistors are a consumptive.
3. Body effect complicates things:

 - really need: $I_{R_b} = V_{t_5} + V_{t_7} - V_{t_4}$

 Replace R_b with a transistor level shift:

 - pinned to V_{DD}

Equations:

- V_{DD}
- V_{BSA2}
- V_{t_6}
- V_{t_7}
- V_{t_8}
- V_{t_9}
- V_{t_10}
- V_{t_11}
- V_{t_12}
Design:

Approach 1: Want $V_{GS} = V_T$, so must make $(w/l) > \text{105s}$. So that:

$V_{OV} = \frac{2I_T}{\mu_n C_0 (w/l)} \rightarrow 0, \text{ for}$

Solution: Problem two mid chip ampl.

Approach 2: Recognize that devices in the

V_{GS} generation don't all need to be saturated — some can be linear.