PROBLEM SET \#7

Issued: Tuesday, Mar. $8^{\text {th }}, 2011$
Due: Tuesday, Mar. 15th, 2011, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. The differential instrumentation amplifier shown in Fig. PS7.1 (the whole circuit, including resistors) must have a voltage gain of 1000 with an accuracy of 0.1 percent. What is the minimum required open-loop gain of the op amp? Assume the op amp open-loop gain may vary by $+100 \%$ and -50% from its nominal value. Neglect the effects of the $R_{\text {in }}$ and $R_{\text {out }}$ of the op amp (i.e. $R_{\text {in }}=\infty$ and $R_{\text {out }}=0$).

Fig. PS7. 1
2. Calculate the common-mode input range of the op amp in Fig. PS7.2 in terms of $V_{D D}$ and $V_{S S}$. Assume that the transistors have $\left|V_{t}\right|=1 \mathrm{~V}$, and ignore the body effect. Also assume that the biasing is arranged so that $\left|V_{o v}\right|=0.2 \mathrm{~V}$ for each transistor except M_{9}. Finally, assume that M_{1} and M_{2} are biased at the edge of the saturation region by M_{9} and I_{C}. What is the minimum supply difference required to satisfy this common-mode input range?

Fig. PS7. 2
3. Write the expressions for the low frequency closed-loop gains and poles of Fig. PS7.3 (a) and (b). $A(s)$ is the transfer function of a single pole amplifier (pole $\omega_{p 1}$) with a large low frequency gain of A_{0}

Fig. PS7.3
4. The circuit shown in Fig. PS7.4 is a two stage op amp employing cascoding. Assume $I_{S S}=$ $1 \mathrm{~mA}, I_{D g-} I_{D 12}$ are all equal to $0.5 \mathrm{~mA},(W / L)_{g-12}$ are all $100 / 0.5$, and the two halves of the circuit are symmetric.
a. Calculate the common mode voltage range at nodes X and Y over which all transistors remain in saturation.
b. If at least 400 mV is required across the $I_{S S}$ current source, what are the minimum sizes, (W / L), of $M_{1}-M_{8}$ in order to achieve a peak-to-peak swing of 200 mV at X and Y ? What are $V_{b 1}, V_{b 2}$, and $V_{b 3}$?
c. Calculate the overall voltage gain $\left(V_{\text {out } 2}-V_{\text {out }}\right) / V_{\text {in }}$
$\mu_{n}=350 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{p}=100 \mathrm{~cm}^{2} / \mathrm{Vs}, t_{o x}=9 \mathrm{~nm}, \lambda_{n}=0.1 \mathrm{~V}^{-1}, \lambda_{p}=0.2 \mathrm{~V}^{-1}, \gamma=0, V_{\text {thp }}=-0.8 \mathrm{~V}, V_{\text {thn }}=0.7 \mathrm{~V}$

Fig. PS7.4
5. Derive the transfer function and sketch the Bode plot of the circuits shown in Fig. PS7.5. The op amp here is ideal. Specify the values of $R_{1}, R_{2} C_{1}$ and C_{2} to provide a gain of 60 dB in the "midband frequency range", a low-frequency 3 dB point at 100 Hz , a high-frequency 3 dB point at 10 kHz , and an input resistance (at midband frequency) of $1 \mathrm{k} \Omega$.

Fig. PS7. 5
6. The circuits shown in Fig. 7.6 use an op amp having a $\pm 4 \mathrm{mV}$ offset. What is the output offset voltage in (a)? What does the output offset become with the input ac coupled through a large capacitor C as shown in (b)? If instead, the $1 \mathrm{k} \Omega$ resistor is capacitively coupled to ground as shown in (c), what does the output offset become? For each case, assume that the input is grounded.

Fig. PS7. 6

