PROBLEM SET #6

Issued: Tuesday, Mar. 1st, 2011

Due: Tuesday, Mar. 8th, 2011, 5:00 p.m. in the EE 140 homework box in 240 Cory

- 1. Design a differential amplifier with an active load as shown in Fig. PS6.1 to meet the following specifications:
 - i. Differential gain $A_{dm} = 80$ V/V.
 - ii. $I_{REF} = I = 100 \mu A$.
 - iii. The DC voltage at the gates of M_3 and M_6 is +1.5V.
 - iv. The DC voltage at the gates of M_7 , M_4 and M_5 is -1.5V.

 M_1 and M_2 form the differential pair while the current source transistor M_4 and M_5 form the active loads for M_1 and M_2 respectively. The DC bias circuit that establishes an appropriate DC voltage at the drain of M_1 and M_2 is neglected here. Use the following technology parameters for your design:

 $\mu_n C_{ox} = 3\mu_p C_{ox} = 90\mu A/V^2$, $V_{tn} = |V_{tp}| = 0.7V$, $V_{An} = |V_{Ap}| = 20V$

Your design should include the value of *R* and the *W/L* ratio of all transistors. Also specify I_D and $|V_{GS}|$ at which each transistor is operating. For DC bias calculation, you may neglect channel length modulation.

Fig. PS6.1

2. A differential circuit employing active loads is shown in Fig. PS6.2. Bias voltage V_G is adjusted so that the drains of M_1 and M_2 are at +5 V dc. Assume that biasing resistors R_{B1} and R_{B2} set $I_{D5} = 1$ mA. Calculate the midband small-signal voltage gain v_o/v_i and estimate the dominant pole frequency. Use inspection analysis wherever possible.

Use the following equations in calculating capacitances:

$$C_{sb} = \frac{L_{sb0}}{\sqrt{1+\frac{V_{BB}}{V_{0}B}}}$$

$$C_{ab} = \frac{C_{abo}}{\sqrt{1+\frac{V_{BB}}{V_{0}B}}}$$

$$C_{abo} = A_D(C_{j0}) + P_D(C_{jsw0}), \text{ where } A_D = (5 \ \mu\text{m})\text{W and } P_D = \text{W}.$$

$$V_{DD}, V_{SS} = 10 \text{ V}$$

$$X_d = 1 \ \mu\text{m}$$

$$\gamma = 0$$

$$\psi_0 = 0.6 \text{ V}$$

$$W_1 = W_2 = W_3 = W_6 = 100$$

$$\mu\text{m}$$

$$W_3 = W_4 = 50 \ \mu\text{m}$$

$$L_{drovn} = 2 \ \mu\text{m}$$

$$L_d = 0.2 \ \mu\text{m}$$

$$U_T = 1 \text{ V}$$

$$C_{ac} = 0.7 \ \text{ff}/\mu\text{m}^2$$

$$\mu_p C_{cx} = 20 \ \mu\text{A/V}^2$$

$$\lambda_n = 0.2 \ \text{v}^{-1}$$

$$V_T = -1 \text{ V}$$

$$C_{jow(NMOS)} = 0.4 \ \text{ff}/\mu\text{m}^2$$

$$C_{jow(NMOS)} = 0.2 \ \text{ff}/\mu\text{m}^2$$

$$C_{jow(PMOS)} = 0.2 \ \text{ff}/\mu\text{m}^2$$

$$Fig. PS6.2$$

3. Determine the unloaded voltage gain v_o/v_i and output resistance for the circuit of PS6.3. Check with SPICE and also use SPICE to plot out the large-signal V_O-V_I transfer characteristic for $V_{SUP} = 2.5$ V. Use SPICE to determine the CMRR if the current-source output resistance is 1 M Ω . Assume no device mismatch. Use the parameters in the table below as necessary.

Parameter		npn	pnp
β_F		200	50
β_R		2	4
V _A		130 V	50 V
η		2e-4	5e-4
Is		5e-15 A	2e-15 A
I _{CO}		1e-10 A	1e-10 A
BV _{CEO}		50 V	60 V
BV _{CBO}		90 V	60 V
BV_{EBO}		7 V	90 V
$ au_F$		0.35 ns	30 ns
$ au_R$		400 ns	3000 ns
eta_0		200	50
r _b		200 Ω	300 Ω
r_c (saturation)		200 Ω	100 Ω
r _{ex}		2 Ω	10 Ω
C_{je0}	B-E junction	1 pF	0.3 pF
ψ_{0e}		0.7 V	0.55 V
n _e		0.33	0.5
C_{u0}	B-C junction	0.3 pF	1 pF
ψ_{0c}		0.55 V	0.55 V
n_c		0.5 V	0.5
C _{cs0}	C-S junction	3 pF	3 pF
ψ_{0s}		0.52 V	0.52 V
n _s		0.5 V	0.5 V

Fig. PS6.3

- 4. Assuming all of the circuits in show in Fig. PS6.4 are symmetric, all of the transistors are saturated, $\gamma = 0$, and $\lambda \neq 0$,
 - i. Calculate the small-signal differential voltage gain of each circuit. You answer should be symbolic in terms of g_{m1} , g_{m2} , g_{m3} , g_{m4} , g_{m5} , r_{o1} , r_{o2} , r_{o3} , r_{o4} , r_{o5} , R_1 , R_2 . Circuits (a) (d) can be solved by inspection, but you may need to draw the small signal model to solve (e).
 - ii. Sketch V_{out} as V_{in1} and V_{in2} vary differentially from zero to V_{DD} . In other words, plot V_{out} vs. V_{in1} - V_{in2} (commonly referred to as V_{id}).

Fig. PS6.4