PROBLEM SET \#6

Issued: Tuesday, Mar. $1^{\text {st }}, 2011$
Due: Tuesday, Mar. 8th, 2011, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. Design a differential amplifier with an active load as shown in Fig. PS6.1 to meet the following specifications:
i. Differential gain $A_{d m}=80 \mathrm{~V} / \mathrm{V}$.
ii. $\quad I_{\text {REF }}=I=100 \mu \mathrm{~A}$.
iii. The DC voltage at the gates of M_{3} and M_{6} is +1.5 V .
iv. The DC voltage at the gates of M_{7}, M_{4} and M_{5} is -1.5 V .
M_{1} and M_{2} form the differential pair while the current source transistor M_{4} and M_{5} form the active loads for M_{1} and M_{2} respectively. The DC bias circuit that establishes an appropriate DC voltage at the drain of M_{1} and M_{2} is neglected here. Use the following technology parameters for your design:
$\mu_{n} C_{o x}=3 \mu_{\mathrm{p}} C_{o x}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=\left|V_{t p}\right|=0.7 \mathrm{~V}, V_{A n}=\left|V_{A p}\right|=20 \mathrm{~V}$
Your design should include the value of R and the W / L ratio of all transistors. Also specify I_{D} and $\mid V_{G S} \backslash$ at which each transistor is operating. For DC bias calculation, you may neglect channel length modulation.

Fig. PS6.1
2. A differential circuit employing active loads is shown in Fig. PS6.2. Bias voltage V_{G} is adjusted so that the drains of M_{1} and M_{2} are at +5 V dc. Assume that biasing resistors $R_{B I}$ and $R_{B 2}$ set $I_{D 5}=1 \mathrm{~mA}$. Calculate the midband small-signal voltage gain v_{o} / v_{i} and estimate the dominant pole frequency. Use inspection analysis wherever possible.

Use the following equations in calculating capacitances:

Fig. PS6.2
3. Determine the unloaded voltage gain v_{o} / v_{i} and output resistance for the circuit of PS6.3. Check with SPICE and also use SPICE to plot out the large-signal $V_{O}-V_{I}$ transfer characteristic for $V_{S U P}=2.5 \mathrm{~V}$. Use SPICE to determine the CMRR if the current-source output resistance is $1 \mathrm{M} \Omega$. Assume no device mismatch. Use the parameters in the table below as necessary.

Parameter		npn	pnp
β_{F}		200	50
β_{R}		2	4
V_{A}		130 V	50 V
η		2e-4	5e-4
I_{S}		5e-15 A	2e-15 A
$I_{C O}$		$1 \mathrm{e}-10 \mathrm{~A}$	1e-10 A
$B V_{\text {CEO }}$		50 V	60 V
$B V_{C B O}$		90 V	60 V
$B V_{E B O}$		7 V	90 V
τ_{F}		0.35 ns	30 ns
τ_{R}		400 ns	3000 ns
β_{0}		200	50
r_{b}		200Ω	300Ω
r_{c} (saturation)		200Ω	100Ω
$r_{e x}$		2Ω	10Ω
$C_{\text {je } 0}$	$B-E$ junction	1 pF	0.3 pF
$\psi_{0 e}$		0.7 V	0.55 V
n_{e}		0.33	0.5
$C_{u 0}$	B-C junction	0.3 pF	1 pF
$\psi_{o c}$		0.55 V	0.55 V
n_{c}		0.5 V	0.5
$C_{\text {cs } 0}$	C-S junction	3 pF	3 pF
$\psi_{0 s}$		0.52 V	0.52 V
n_{s}		0.5 V	0.5 V

Fig. PS6.3
4. Assuming all of the circuits in show in Fig. PS6.4 are symmetric, all of the transistors are saturated, $\gamma=0$, and $\lambda \neq 0$,
i. Calculate the small-signal differential voltage gain of each circuit. You answer should be symbolic in terms of $g_{m 1}, g_{m 2}, g_{m 3}, g_{m 4}, g_{m 5}, r_{o 1}, r_{02}, r_{03}, r_{04}, r_{05}, R_{1}, R_{2}$. Circuits (a) - (d) can be solved by inspection, but you may need to draw the small signal model to solve (e).
ii. Sketch $V_{\text {out }}$ as $V_{\text {in } 1}$ and $V_{\text {in } 2}$ vary differentially from zero to $V_{D D}$. In other words, plot $V_{\text {out }}$ vs. $V_{\text {in } 1}-V_{\text {in } 2}$ (commonly referred to as $V_{\text {id }}$).

Fig. PS6. 4

