PROBLEM SET \#11

Issued: Tuesday, Apr. $19^{\text {th }}, 2011$
Due: Tuesday, Apr. $26^{\text {th }}, 2011$, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. In the two stage op amp of Fig. PS11.1, $W / L_{l-4}=50 / 0.5$. Also, $I_{s s}=0.25 \mathrm{~mA}$ and each output branch is biased at 1 mA . $V_{D D}=3 \mathrm{~V}$ and use the parameters in the table below.

NMOS Model			
LEVEL $=1$	$\mathrm{VTO}=0.7 \mathrm{~V}$	$\mathrm{GAMMA}=0.45$	$\mathrm{PHI}=0.9$
NSUB $=9 \mathrm{e}+14$	$\mathrm{LD}=0.08 \mu \mathrm{~m}$	$\mu_{n}=350 \mathrm{~cm}^{2} / \mathrm{Vs}$	$\lambda_{n}=0.1 \mathrm{~V}^{1 / 2}$
TOX $=9 \mathrm{~nm}$	$\mathrm{~PB}=0.9 \mathrm{~V}$	$\mathrm{CJ}=0.56 \mathrm{e}-3 \mathrm{~F} / \mathrm{m}^{2}$	$\mathrm{CJSW}=0.35 \mathrm{e}-11 \mathrm{~F} / \mathrm{m}$
MJ $=0.45$	$\mathrm{MJSW}=0.2$	$\mathrm{CGDO}=0.4 \mathrm{e}-9 \mathrm{~F} / \mathrm{m}$	$\mathrm{JS}=1.0 \mathrm{e}-8 \mathrm{~A} / \mathrm{m}^{2}$
PMOS Model			
LEVEL $=1$	$\mathrm{VTO}=-0.8 \mathrm{~V}$	$\mathrm{GAMMA}=0.4$	$\mathrm{PHI}=0.9$
NSUB $=5 \mathrm{e}+14$	$\mathrm{LD}=0.09 \mu m$	$\mu_{\rho}=100 \mathrm{~cm}^{2} / \mathrm{Vs}$	$\lambda_{p}=0.2 \mathrm{~V}^{1 / 2}$
TOX $=9 \mathrm{~nm}$	$\mathrm{~PB}=0.9 \mathrm{~V}$	$\mathrm{CJ}=0.94 \mathrm{e}-3 \mathrm{~F} / \mathrm{m}^{2}$	$\mathrm{CJSW}=0.32 \mathrm{e}-11 \mathrm{~F} / \mathrm{m}$
MJ $=0.5$	$\mathrm{MJSW}=0.3$	$\mathrm{CGDO}=0.3 \mathrm{e}-9 \mathrm{~F} / \mathrm{m}$	$\mathrm{JS}=0.5 \mathrm{e}-8 \mathrm{~A} / \mathrm{m}^{2}$

a) If a maximum output swing of $0.4 \sim 2.4 \mathrm{~V}$ is desired, design W / L_{5-8}.
b) Determine the CM level at nodes X and Y using the $W / L_{5,6}=60 / 0.5$ and $W / L_{7,8}=50 / 0.5$. Use these sizings for all the problems below.
c) If each output is loaded by a $1-\mathrm{pF}$ capacitor, compensate the op amp by Miller capacitors C_{c} across the gates and drains of $M_{5,6}$ for a phase margin of 60° in unity-gain feedback. Calculate the pole and zero positions after compensation.
d) Design the resistance that must be placed in series with the compensation capacitors to position the zero atop the non-dominant pole.
e) Determine the slew rate.

Fig. PS11.1

