PROBLEM SET #11

Issued: Tuesday, Apr. 19th, 2011

Due: Tuesday, Apr. 26th, 2011, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. In the two stage op amp of Fig. PS11.1, $W/L_{1-4} = 50/0.5$. Also, $I_{ss} = 0.25$ mA and each output branch is biased at 1mA. $V_{DD} = 3$ V and use the parameters in the table below.

NMOS Model			
LEVEL = 1	VTO = 0.7V	GAMMA = 0.45	PHI = 0.9
NSUB = 9e+14	$LD = 0.08 \mu m$	$\mu_n = 350 \mathrm{cm}^2 / \mathrm{Vs}$	$\lambda_n = 0.1 \mathrm{V}^{1/2}$
TOX = 9nm	PB = 0.9V	$CJ = 0.56e-3 F/m^2$	CJSW = 0.35e-11 F/m
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9 F/m	$JS = 1.0e-8 A/m^2$
PMOS Model			
LEVEL = 1	VTO = -0.8V	GAMMA = 0.4	PHI = 0.9
NSUB = 5e+14	$LD = 0.09 \mu m$	$\mu_p = 100 \mathrm{cm}^2/\mathrm{Vs}$	$\lambda_p=0.2~\mathrm{V}^{1/2}$
TOX = 9nm	PB = 0.9V	$CJ = 0.94e-3 F/m^2$	CJSW = 0.32e-11 F/m
MJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9 F/m	$JS = 0.5e-8 A/m^2$

a) If a maximum output swing of $0.4 \sim 2.4$ V is desired, design W/L_{5-8} .

- b) Determine the CM level at nodes X and Y using the $W/L_{5,6} = 60/0.5$ and $W/L_{7,8} = 50/0.5$. Use these sizings for all the problems below.
- c) If each output is loaded by a 1-pF capacitor, compensate the op amp by Miller capacitors C_c across the gates and drains of $M_{5,6}$ for a phase margin of 60° in unity-gain feedback. Calculate the pole and zero positions after compensation.
- d) Design the resistance that must be placed in series with the compensation capacitors to position the zero atop the non-dominant pole.
- e) Determine the slew rate.

Fig. PS11.1