$1^{\text {st }}$ and $2^{\text {nd }}$ stage gain with $\mathrm{Cc}=0$

Overall gain with $\mathrm{Cc}=0$

$$
\mathrm{A}_{\mathrm{v} 0}=\mathrm{A}_{\mathrm{v} 1,0} \mathrm{~A}_{\mathrm{v} 2,0}=\mathrm{g}_{\mathrm{m} 1} \mathrm{R}_{1} \mathrm{~g}_{\mathrm{m} 2} \mathrm{R}_{2}
$$

Things to think about:

1. What is the equation for gain between the first two poles?
2. What is the equation for gain after the second pole?
3. What is the gain at the first-stage unity gain frequency?
4. What is the gain at the second-stage unity gain frequency?
5. What is the unity gain frequency?

Example with $\mathrm{C}_{\mathrm{c}}=0$

$g_{m 1}=1 \mathrm{mS}$
$R_{1}=100 \mathrm{k}$
$\mathrm{C} 1=10 \mathrm{pF}$
$\mathrm{g}_{\mathrm{m} 2}=10 \mathrm{mS}$
$R_{2}=1 \mathrm{k}$
$\mathrm{C} 2=10 \mathrm{pF}$

What's the phase margin?
What's the phase margin if I use this amplifier with $\mathrm{f}=0.1$?

$$
\mathrm{A}_{\mathrm{vo}}=1000
$$

Z_{o1} with $\mathrm{A}_{\mathrm{v} 2,0} \mathrm{C}_{\mathrm{c}}>\mathrm{C}_{1}>\mathrm{C}_{\mathrm{c}}$

$$
A_{v 1}=g_{m 1} Z_{o 1} \text { with } A_{v 2,0} C_{c}>C_{1}>C_{c}
$$

Things to think about:

1. What's the equation for the gain in the various sections?
2. What does the curve look like if $\mathrm{C}_{\mathrm{c}}>\mathrm{C}_{1}$?
3. What does the curve look like if $\omega_{\mathrm{p} 2,0}>\omega_{\mathrm{p} 1,0}$
4. What is the frequency ratio of the old and new first pole?
5. What is the frequency ratio of the old and new second pole?
6. Answer questions $4 \& 5$ assuming 2 and/or 3 .

Overall gain with $\mathrm{C}_{1}>\mathrm{C}_{\mathrm{c}}>0$ Overall gain with $\omega_{\mathrm{p} 2}>\omega_{\mathrm{u}}$

