$ EE130 Fall 2005 MOSFET Project: TSUPREM4 DECK $ This is the process simulation input deck. Tsuprem4 allows the $ device engineer to simulate actual process flows to fabricate the $ intended device. This can then be imported into MEDICI to simulate IV. $ The following lines of code simulate the fabrication steps (i.e, $ oxidation, implant, diffusion, deposition, etc) to create an nMOSFET $ at the 45 nm technology node. Note that this transistor has a physical $ gate length Lg of 18 nm! $ Defining some of the variables of interest for mesh generation $ -------------------------------------------------------------------- $ All simulations require a mesh of points where the governing equations $ are solved for numerically. $ -------------------------------------------------------------------- define lgate .018 define contactdistance .05 define contactwidth .05 define boundary .18 define aligntol .03 $ Adjust the coarse/fineness of the grid mesh grid.fac=1.0 $ Define the grid in terms of the variables $ Staring with the x lines first $ ------------------------------------------------------------------ $ Here the mesh is generated by specifying coordinates and spacings. $ ------------------------------------------------------------------ line x loc=-@{boundary} spac=.05 line x loc=-((@{lgate}/2)+@{contactdistance}+@{contactwidth}) spac=.03 line x loc=-((@{lgate}/2)+@{contactdistance}) spac=.02 line x loc=-(@{lgate}/2) spac=@{lgate}/20 line x loc=(@{lgate}/2) spac=@{lgate}/20 line x loc=(@{lgate}/2)+@{contactdistance} spac=.02 line x loc=(@{lgate}/2)+@{contactdistance}+@{contactwidth} spac=.03 line x loc=@{boundary} spac=.05 $ Now we will do the y lines next line y loc=0 spac=.002 line y loc=.25 spac=.05 $ Initialize structure (P-type <100> Silicon) $ -------------------------------------------------------------------- $ This specifies a P-type Si substrate of doping 1e15 cm-3 with wafer $ surface of oreination <100> $ -------------------------------------------------------------------- initialize <100> boron=1e15 $ Now we starting the process flow $ STEP 1: $ Vt adjust implant to raise the threshold voltage. A sacrificial $ screening oxide is used place dopants right at interface. $ NOTE: change implant dose from 4.5e13 to 4.5Xe13 where X is the $ last digit in your SID deposit oxide thickness=0.01 implant boron dose=4.5e13 energy=5 impl.tab=boron etch oxide all $ STEP 2: $ Gate oxidation growth $ Specify native oxide on Si surface to be 1 Angstrom $ grow thin oxide with target EOT ~ 1.0 nm $ NOTE: change oxidation time from 14 to 14.Y where Y is the last digit of $ your partner's SID method compress dy.oxide=.00002 ambient initial=0.0001 DIFFUSION time=14 temp=800 DRYO2 $ STEP 3: $ Deposit polysilicon deposit material=polysili thickness=0.06 $ STEP 4: $ Etching polysilicon to define gate of Lg = 18 nm deposit material=photoresist thickness=1.0 spaces=5 etch photoresist left p1.x=-(@{lgate}/2) p2.y=0 etch photoresist right p1.x=(@{lgate}/2) p2.y=0 etch polysili old.dry thickness=0.06 etch photoresist all $ STEP 5: $ Angled Halo implant to reduce Vt roll-off and leakage currents $ Note: change implant dose from 1e13 to 1.0Ze13 where Z is the difference $ between the last digits of you and your partners SID.(abs value) implant boron dose=1e13 energy=11 tilt=14 rotation=180 impl.tab=boron $ STEP 6: $ LDD implant for shallow junction formation deposit material=oxide thick=0.005 spaces=15 implant arsenic dose=1e14 energy=5 impl.tab=arsenic etch material=oxide old.dry thickness=0.005 $ STEP 7: $ Spacer formation and Deep Source/Drain implant deposit material=oxide thick=0.025 etch material=oxide old.dry thickness=0.025 implant arsenic dose=1e15 energy=10 impl.tab=arsenic $ STEP 8: $ High temperature aneal for dopant activation diffusion time=0.167 temperat=1000 inert $ STEP 9: $ Deposit LTO for Passivation (Low Temperature Oxide) deposit material=oxide thickness=0.25 $ STEP 10: $ Contact hole etching deposit photoresist thick=1 space=5 etch photoresist start x=-((@{lgate}/2)+@{contactdistance}) y=-3 etch continue x=-((@{lgate}/2)+@{contactdistance}) y=1 etch continue x=-((@{lgate}/2)+@{contactdistance}+@{contactwidth}) y=1 etch done x=-((@{lgate}/2)+@{contactdistance}+@{contactwidth}) y=-3 etch photoresist start x=(@{lgate}/2)+@{contactdistance} y=-3 etch continue x=(@{lgate}/2)+@{contactdistance} y=1 etch continue x=(@{lgate}/2)+@{contactdistance}+@{contactwidth} y=1 etch done x=(@{lgate}/2)+@{contactdistance}+@{contactwidth} y=-3 etch material=oxide old.dry thickness=0.4 etch photoresist all $ STEP 11: $ Deposit Interconnect Aluminum deposit material=aluminum thickness=0.1 $ STEP 12: $ Metal etching deposit photoresist thick=1 space=5 etch photoresist start x=-((@{lgate}/2)+@{contactdistance}-@{aligntol}) y=-3 etch continue x=-((@{lgate}/2)+@{contactdistance}-@{aligntol}) y=1 etch continue x=(@{lgate}/2)+@{contactdistance}-@{aligntol} y=1 etch done x=(@{lgate}/2)+@{contactdistance}-@{aligntol} y=-3 etch material=aluminum old.dry thickness=0.2 etch photoresist all $ Define electrodes for import into MEDICI simulator electrode name=gate x=0 electrode name=drain x=(@{lgate}/2)+@{contactdistance}+(@{contactwidth}/2) electrode name=source x=-(@{lgate}/2)-@{contactdistance}-(@{contactwidth}/2) electrode name=substrate bottom $ Save structure to load into MEDICI savefile out.file=EE130nmos.str medici poly.ele $ Final 2D plot of the device showing doping contours select z=log10(arsenic) plot.2d y.max=0.1 y.min=-0.08 color polysili color=2 color silicon color=7 color oxide color=5 color photoresist color=6 color aluminum color=4 foreach x (15 to 21 step 1) contour value=x line=5 color=3 end select z=log10(boron) plot.2d ^clear y.max=0.1 y.min=-0.08 foreach x (15 to 21 step 1) contour value=x line=5 color=4 end $ Print thickness of deposited or grown layers $ Pay attention to the gate oxide thickness select z=1 print layers x.v=0 quit