Due at 1700, Fri. Oct. 9 in homework box under stairs, first floor Cory.
Note: up to 2 students may turn in a single writeup. Reading Nise 8, 9

1. (20 pts) Root locus (Nise 8.7) moved from PS5, prob 5
Given the unity gain feedback system in Fig. 1, where

\[G(s) = \frac{K(s+10)(s+20)}{(s+30)(s^2-20s+200)} \]

[4 pts] a) Find and approximately hand sketch the root locus.
[4 pts] b) Find the range of \(K \) which makes the system stable.
Using the second order approximation:
[5 pts] c) Find the value of \(K \) that gives \(\zeta = 0.707 \) for the system’s dominant closed-loop poles.
[5 pts] d) Find the value of \(K \) that will yield a critically damped system.
[2 pts] e) Use MATLAB to plot the step response for c) and d) and compare to approximation estimate.

2. (20 pts) Root locus (Nise 8.8)
The open loop transfer function for a system in unity feedback (Fig. 1) is given by:

\[G(s) = \frac{s^2+19s-20}{s^2-10s+10c} \]

[4 pts] a) Determine the characteristic equation for the closed loop system.
[16 pts] b) Sketch the root locus with respect to positive values of \(c \), showing direction in which \(c \) increases on the locus.

3. (20 pts) Root Locus (Nise 8.6, 8.8)
Consider the smoothing system shown in Fig. 2. (Assume \(K_1, K_2, K_3 \) are positive constants.)
[7 pts] a. Sketch a root locus where the roots vary as a function of \(K_3 \).
[3 pts] b. Locate the closed-loop zeros.
[10 pts] c. Repeat parts 3a and 3b for a root locus sketched as a function of \(K_2 \).

4. (20 pts) Root locus (Nise 8.6, 8.9)
Consider the unity gain feedback system in Fig. 1 with \(G(s) = \frac{k(s^2+3s+2)}{s^2-1k+5} \). Here \(-\infty < k < \infty\)
[3 pts] b) Find the \(j\omega \) crossing using Routh-Hurwitz.
[3 pts] c) Hand sketch the closed-loop root locus for positive and negative \(k \).
[2 pts] d) Find the range of \(k \) for stability.

5. (20 pts) PD compensation (Nise 9.3)
Consider open loop plant

\[G(s) = \frac{K}{s(s+10)(s+20)} \]

and unity feedback.
[3 pts] a) find \(K \) such that overshoot is 20%.
[7 pts] b) Design a PD controller such that settling time is reduced by a factor of 4, with the same 20% overshoot.
[6 pts] c) Hand sketch the root locus for the original system and the system with a lead PD compensator, and verify with Matlab.
[2 pts] d) Use Matlab to compare the step response for the closed-loop compensated and uncompensated systems, transient and steady state response.
[2 pts] e) Find the steady state error for a step for both systems.

Fig. 1. Unity Gain Feedback. Fig. 2. Smoother block diagram.