Chapter 12 – Design via State Space

12 Design via state space
- 12.1 Introduction
 - Can be applied to a wider class of systems than transform methods
 - Systems with nonlinearities
 - Multiple-input, multiple output (MIMO) systems
 - Systems of higher order than 2
- We will focus on the application to linear systems
 - Specify all CL poles
 - Parameters for each CL pole
 - Technique for finding these parameter values
- Cannot specify CL zero locations
- Sensitive to parameter changes
- Wide range of computational support
 - Loss of graphic insight into a design problem
12 Design via state space
12.2 Controller design

State-variable FB control, [1, p. 665]

Concept
- n^{th}-order CL characteristic equation (CE)
 \[
 \det(sI - A) = s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0 = 0
 \]
- There are n coefficients whose values determine the n CL poles
- Introduce n adjustable parameters into the system and relate them to the n coefficients, so that we can place the n CL poles

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 7 / 58

12 Design via state space 12.2 Controller design
State-variable FB control, [1, p. 666]

Concept
- Before, output-variable FB, now, state-variable FB
 - Each state variable is fed back to the control, u, through a gain, k_i
 - State-variable FB gain: $-K$
- CL system is plant with state-variable FB

\[
\dot{x} = Ax + Bu \\
= Ax + B(-Kx + r) \\
= (A - BK)x + Br \\
y = Cx
\]

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 8 / 58

12 Design via state space 12.2 Controller design
State-variable FB control in PV form, [1, p. 668]

Concept
- Pole placement for plants in phase-variable (PV) form
 1. Represent the plant in PV form
 2. FB each PV to the input of the plant through a gain, k_i
 3. Find the CE for the CL system
 4. Decide upon all CL pole locations and determine equivalent CE
 5. Equate like coefficients of the CE and solve for k_i

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 11 / 58
State-variable FB control in PV form, [1, p. 668]

Concept
- State-variable FB
 \[u = -Kx; \quad K = [k_1 \quad k_2 \ldots \quad k_n] \]
- CL system
 \[
 A - BK = \begin{bmatrix}
 0 & 1 & 0 & \ldots & 0 \\
 0 & 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 -(a_0 + k_1) & -(a_1 + k_2) & -(a_2 + k_3) & \ldots & -(a_{n-1} + K_n)
 \end{bmatrix}
 \]
- CL system CE
 \[
 \det(sI - (A - BK)) = s^n + (a_{n-1} + k_n)s^{n-1} + \ldots + (a_1 + k_2)s + (a_0 + k_1) = 0
 \]

Example, [1, p. 669]

Example (Controller design for PV form)
- **Problem:** Design the PV FB gains to yield
 - %OS = 9.5%
 - \(T_s = 0.74 \) seconds
- **Solution:** On the board

Definitions, [1, p. 672]

- **Controllability:** If an input to a system can be found that takes every state variable from a desired initial state to a desired final state, the system is said to be controllable; otherwise the system is uncontrollable.
 - Control variable, \(u \), can be used to control the behavior of each state variable in \(x \)
 - Poles of the control system can be placed where we desire
 - Determine, a priori, whether pole placement is a viable design technique for a controller

Concept
- Desired CL system CE
 \[
 \det(sI - (A - BK)) = s^n + d_{n-1}s^{n-1} + \ldots + d_1s + d_0 = 0
 \]
 \[d_i = a_i + k_{i+1}; \quad i = 0, 1, 2, \ldots, n - 1 \]
- CL system TF
 - Denominator polynomial: the CE
 - Numerator polynomial: formed from the coefficients of the output coupling matrix, \(C \), for systems written in PV form
 - Same for plant and CL system

Controllability by inspection, [1, p. 673]

- **Concept**
 - When the system matrix, \(A \), is in diagonal or parallel form, it is apparent whether or not the system is controllable
 - A system with distinct (no repeat) eigenvalues and a diagonal system matrix, \(A \), is controllable if the input coupling matrix, \(B \), does not have any rows that are zero
The controllability matrix, [1, p. 674]

- In other forms, the existence of paths from the input to the state variables is not a criterion for controllability since the equations are not decoupled
 - \(n \)-th order plant
 \[\dot{x} = Ax + Bu \]
 - is completely controllable if the matrix
 \[CM = [B \ AB \ \ldots \ \ A^{n-1}B] \]
 - is of rank \(n \), where \(CM \) is called the controllability matrix

Example, [1, p. 675]

Example (Controllability via the controllability matrix)

- Problem: Determine if the system is controllable
 \[A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} ; \quad B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \]
- Solution: On the board

Alternative approaches to controller design, [1, p. 676]

- For systems not represented in PV form
- 2 approaches
 - Matching coefficients: Matching the coefficients of
 \[\det(sI - (A - BK)) \]
 with coefficients of the desired CE
 - Same method used for systems in PV representation
 - Transformation: Transforming the system to PV form, designing the control FB gain, & transforming the designed system back to its original state-variable representation

Approach – matching coefficients, [1, p. 677]

Concept
- Matching the coefficients of
 \[\det(sI - (A - BK)) \]
 with coefficients of the desired CE
- Leads to difficult calculations of the control gains, especially for higher-order systems not represented with PVs
- Problem: Design state-variable control FB gain for the plant to yield
 - \(%OS = 15\% \)
 - \(T_s = 0.5 \) second
 \[G(s) = \frac{10}{(s + 1)(s + 2)} \]
- Solution: On the board
Approach – transformation, [1, p. 678]

Procedure

1. Transform the system to PV representation
2. Design the state-variable control FB gain
3. Transform the system in PV representation back to the original representation

Example (Controller design by transformation)

Problem: Design state-variable control FB gain for the plant to yield

- \(\% \text{OS} = 20.8\% \)
- \(T_s = 4 \text{ seconds} \)

\[
G(s) = \frac{s + 4}{(s + 1)(s + 2)(s + 5)}
\]

Solution: On the board
Observer motivation, [1, p. 683]

Concept

- Controller design relies upon access to the state variables for FB through adjustable gains
- Estimate states can be fed to the controller
- Observer: Estimator used to calculate state variables that are not accessible from the plant
- Observer error:
 \[e_x = x - \hat{x} \]
 \[y - \hat{y} = C(x - \hat{x}) = Ce_x \]

- Plant:
 \[\dot{x} = Ax + Bu \]
 \[y = Cx \]

Observer canonical form yields an easy solution for the observer FB gain
- Observer FB gain, \(L \): Ensures the TR of the observer is faster than the response of the controlled loop in order to yield a rapidly updated estimate of the state vector
12 Design via state space
12.5 Observer design

Procedure
1. Find error system, i.e., state equations for error between actual state vector & estimated state vector,
\[\dot{x} = A\hat{x} + Bu + L(y - \hat{y}) \]
\[\hat{y} = C\hat{x} \]
2. Find CE for error system
3. Evaluate required observer FB gain, \(L \), to meet rapid TR for observer
4. Select eigenvalues of observer to yield stability & desired TR that is faster than controlled CL response

Definitions, [1, p. 690]

- **Observability**: If the initial-state vector, \(x(t_0) \), can be found from inputs, \(u(t) \), and measurements, \(y(t) \), over a finite interval of time from \(t_0 \), the system is said to be observable; otherwise the system is said to be unobservable.
 - Knowledge of measured output variables, \(y \), and control inputs, \(u(t) \), can be used to observe the behavior of each state variable in \(x \)
 - Poles of the observer system can be placed where we desire
 - Determine, a priori, whether pole placement is a viable design technique for an observer

The observability matrix, [1, p. 691]

- In other forms, the existence of paths from the output to the state variables is not a criterion for observability since the equations are not decoupled
 - \(n^{th} \)-order plant
 \[\dot{x} = Ax + Bu \]
 \[y = Cx \]
 is completely observable if the matrix
 \[O_M = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \]
 is of rank \(n \), where \(O_M \) is called the observability matrix

Example (Observability via the observability matrix)

- **Problem**: Determine if the system is observable
 \[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix}; \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \quad C = [0 & 5 & 1] \]

- **Solution**: On the board
Example (Unobservability via the observability matrix)

- **Problem:** Determine if the system is observable

\[
A = \begin{bmatrix}
0 & 1 \\
-5 & -41
\end{bmatrix}; \quad B = \begin{bmatrix}
0 \\
1
\end{bmatrix}; \quad C = \begin{bmatrix}
5 & 4
\end{bmatrix}
\]

- **Solution:** On the board

Example (Observer design by matching coefficients)

- **Problem:** Design an observer FB gain for the system in PV representation with a TR described by

\[
\zeta = 0.7 \quad \omega_n = 100
\]

\[
G(s) = \frac{407(s + 0.916)}{(s + 1.27)(s + 2.69)}
\]

- **Solution:** On the board

Alternative approaches to controller design, [1, p. 676]

Concept

- For systems not represented in observer canonical form
- 2 approaches
 - **Matching coefficients:** Matching the coefficients of
 \[
 \det(sI - (A - LC))
 \]
 with coefficients of the desired CE
 - **Transformation:** Transforming the system to observer canonical form, designing the observer FB gain, & transforming the designed system back to its original state-variable representation

Approach - matching coefficients, [1, p. 693]

Concept

- Matching the coefficients of
 \[
 \det(sI - (A - LC))
 \]
 with coefficients of the desired CE
- Leads to difficult calculations of the observer FB gain, especially for higher-order systems not in PV representation

Approach – transformation, [1, p. 695]

Procedure

1. Transform the system to PV representation
2. Design the observer FB gain
3. Transform the system in PV representation back to the original representation
Approach – transformation, [1, p. 695]

Procedure

1. Transform the system to PV representation
 - Plant not in PV representation
 \[
 \dot{z} = Az + Bu \\
 y = Cz
 \]
 with observability matrix
 \[
 OM_z = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}
 \]

2. Design the observer FB
 - Transformed plant with FB gains
 \[
 \dot{e}_x = (P^{-1}AP - L_xCP)e_x \\
 y - \hat{y} = CPe_x
 \]

Example, [1, p. 695]

Example (Observer design by transformation)

- **Problem:** Design an observer in cascade form

 \[
 G(s) = \frac{1}{(s + 1)(s + 2)(s + 5)}
 \]

- **Solution:** On the board
Concepts, [1, p. 700]

Concept
- Design systems in state-space representation for steady-state error
- Error is fed forward to the controlled plant via an integrator
 - Additional state variable
 \[\dot{x}_N = r -Cx \]
- Plant
 \[\dot{x} = Ax + Bu \]
 \[\dot{x}_N = -Cx + r \]
 \[y = Cx \]
- Control FB
 \[u = -Kx + Ke x_N \]
 \[= -[K -Ke] \begin{bmatrix} x \\ x_N \end{bmatrix} \]

Example, [1, p. 701]

Example (Design of integral control)
- **Problem:**
 1. Design a controller without integral control to yield
 - \(\%OS = 10\% \)
 - \(Ts = 0.5 \) second
 Evaluate the steady-state error for a unit step
 2. Repeat the design using integral control. Evaluate the steady-state error for a unit step input.
- **Solution:** On the board

Bibliography