Lecture abstract

Topics covered in this presentation
- Feedback control systems
- Open- vs. closed-loop control
- Analysis & design objectives
- Transient response
- Stability & instability
- System response (natural & forced)
- Steady state error
- Robustness

Chapter outline

1 – Introduction
1.1 Introduction
1.2 A history of control systems
1.3 System configurations
1.4 Analysis and design objectives
1.5 The design process
1.6 Computer-aided design
1.7 The control systems engineer

OL systems, [1, p. 8]

Open-loop (OL) system
- Has poor sensitivity to disturbances, i.e., it cannot compensate for disturbances that add at the input nor output of the plant

Examples
- Toaster (input: time, output: color)
- Irrigation sprinkler (input: time, output: soil moisture)
- Stepper motors in inkjet printers (input: steps, output: position)
- Motor voltage speed control (input: voltage, output: speed)

Figure: Block diagram of an OL control system

CL (FB control) systems, [1, p. 9]

Closed-loop (CL) system
- Corrects for disturbances by gathering measurements, feeding measurements back through a feedback (FB) path, and comparing measurements to previous and future inputs

Examples
- Cruise control (input: throttle, measurement: speed, output: speed)
Comparison of OL & CL systems, [1, p. 8-9]

OL system
- Advantages
 - Simple
 - Inexpensive
- Disadvantages
 - Lower accuracy
 - Higher sensitivity to noise, disturbances, and changes in the environment
 - Other considerations

CL system
- Advantages
 - Higher accuracy
 - Less sensitivity to noise, disturbances, and changes in the environment
- Disadvantages
 - Complex
 - Expensive
 - Stability

Analysis & design objectives, [1, p. 11]

Transient response
- Due to the system and the way the system acquires or dissipated energy
- Response prior to the steady-state response in stable systems

Steady-state (forced) response
- Due to input for linear systems
- Response that remains after the transient response has decayed to 0

Robustness
- Sensitivity to parameter changes

Other considerations
- Hardware selection, e.g., power requirements and sensor accuracy
- Finances

Stability
- Total response = natural response + forced response
- Natural response
 - Defines the stability of the system (3 types)
 - Decays to 0, leaving the forced response, i.e., dissipates system energy
 - Oscillates, i.e., holds system energy constant
 - Grows without bound, i.e., acquires system energy
- Forced response
 - Particular solution is dependent on the input
- Unstable
 - Natural response is so much greater than the forced response that the system is no longer controllable nor observable
- Stable
 - Transient and steady-state response can be designed

Analysis & design objectives, [1, p. 11]
The control system design procedure, [1, p. 15]

1. Transform requirements into a physical system
 - System concept
 - Qualitative description
 - Determine inputs and outputs
 - Description of the physical system
2. Draw a functional block diagram
 - Detailed layout
 - Describes the component parts of the system (function and hardware) and shows their interconnections
3. Create a schematic
 - Transform the physical system into a schematic diagram
 - Make approximations and neglect certain phenomena
 - Start simple, check assumptions later through analysis and simulation, if too simple, i.e., does not adequately account for observed behavior, add phenomena
 - Use knowledge of the physical system, physical laws, and practical experience
4. Develop a mathematical model (block diagram)
 - Use physical laws
 - Relationship between the inputs and outputs of the dynamic system
 - Linear, time-invariant (LTI) differential equations (DEs)
 - High order, nonlinear, time-varying, or partial DEs
 - Transfer functions (alternate representations of LTI DEs transformed using the Laplace transform)
 - State-space representation (alternate representation of nth-order DEs as n simultaneous first-order DEs)
 - Knowledge of parameter values
5. Reduce the block diagram
 - Interconnect subsystem models to form block diagrams of larger systems
 - Each block represents a mathematical description with dynamics, relations, inputs, outputs, and parameters
6. Analyze & design
 - Compare time response specifications and performance requirements
 - Test input waveform signals
 - Sensitivity analysis
 - Improve time response and performance
 - Adjusting system parameters
 - Design additional hardware
 - Minimize sensitivity over an expected range of environmental changes

Test waveforms used in control systems, [1, p. 19]

Impulse

- Usage
 - Transient response (TR)
 - Modeling
- \[\delta(t) = \begin{cases} \infty & \text{for } 0^- < t < 0^+ \\ 0 & \text{elsewhere} \end{cases} \]

Step

- Usage
 - TR
 - Steady state error
- \[u(t) = \begin{cases} 1 & \text{for } t > 0 \\ 0 & \text{elsewhere} \end{cases} \]

Ramp

- Usage
 - Steady state error
- \[tu(t) = \begin{cases} t & \text{for } t \geq 0 \\ 0 & \text{elsewhere} \end{cases} \]
Parabola

Usage
- Steady state error

\[
\frac{1}{2}t^2 u(t) = \frac{1}{2}t^2 \\
= 0 \\
\text{elsewhere}
\]

Figure: Parabola test waveform used in control systems

Sinusoid

Usage
- Transient response
- Modeling
- Steady state error

\[
\sin(\omega t)u(t) = \sin(\omega t) \\
= 0 \\
\text{elsewhere}
\]

Figure: Sinusoid test waveform used in control systems

Chirp

Usage
- Modeling

\[
\sin(\omega(t)u(t) = \sin(\omega(t) \\
= 0 \\
\text{elsewhere}
\]

Figure: Chirp test waveform used in control systems

Bibliography