
Micro-Controllers: An Overview

Anil Aswani

December 1, 2005

1 Introduction

With the advent of low-cost processors and accessories, the ability to do control digitally has become increas-
ingly feasible; this has led to a dramatic change in the way controllers are designed, tested, and implemented.
Moreover, these digital controllers are usually more robust and easier to design than their analog counter-
parts.

A micro-controller (MC) is the processor that is used to do the digital control. Specially designed MC’s
often include built-in peripherals (such as memory, analog ↔ digital convertors, and timers) to deal with the
practicalities of doing MC design. A controller is a program written on the MC that does the control. The
controller must be able to read information from the outside world, process the information, and output a
control signal based on the information.

Digital controller design has a unique set of constraints which must be met. The controller must be:

1. Functional: The MC must be able to do the control. This means that it must be fast enough to sample
the reference and feedback signals, process the signals, and output a control signal that stabilizes the
system and meets the design constraints. The requirement of a low system time-delay due to the
controller is inherent in these constraints.

2. Cheap: Many times, cheaper MC’s have limited computation abilities - they are unable to do floating-
point computations. This means that computations must be done with fixd-point computations. Also,
the amount of memory and the speed of the MC are minimal.

3. Fast: Many systems use a single MC to do multiple tasks. Thus, a single controller on a MC must
behave nicely. First, the controller should not use significant computation power. Second, the controller
should be modular in terms of memory usage (and other MC peripherals usage).

These constraints and the overall flow of MC design will be explained further in this overview.

2 MC Paradigm

A MC must be able to take signals from the outside world, process the signals, and output control signals.
The transition between the ”outside world” (outside the MC) and the ”inside world” (inside the MC) is an
important one to understand. Conceptually, we start with analog signals, pass the analog filter through an
anti-aliasing filter, sample and quantize the signal, process the digital signal in the MC, reconstruct the signal
with a zero-order hold. The reconstructed analog signal can be passed through an optional anti-imaging
filter. This process is seen in Figure 1.

The sampling must be fast enough to be able to do the control. The difficulties arise through having to
satisfy the Nyquist rate keep the system time-delay low. The theoretical minimum sampling rate is given by
the Nyquist rate, but in practice we sample several times faster than the Nyquist rate. Unfortunately, we
are limited in how fast we sample by how much data the MC can process and by the sampling abilities of
the MC. Moreover, we need to keep the system time-delay low. System time-delays add a phase-lag, which
can lead to instability if the phase-lag (time-delay) is large.

1



Micro-Controller
(Control Law)

Anti-Alias
Filter

Anti-Imaging
Filter

(Optional)

Reference
(Input) Sampler

Quantizer
Zero-Order

Hold
Plant

Sensors

Output

Micro-Controller

Figure 1: The Micro-Controller Paradigm

3 Controller Flow

The program flow of the controller is non-linear. The difficulties arise with the need to sample data and
process the data at the same time. There are two approches to this problem; one approach uses interrupts
and the other uses high-level MC functions written by the MC manufacturer.

Interrupts can be thought of as event-driven programming. In other words, when a special event occurs
(e.g., the timer counts down to zero) the interrupt stops the program and calls a special function. After this
special function finishes, the processor goes back to the last position in the original program and continues
running.

With interrupts, two approaches can be used for the controller flow. One approach is to process and im-
plement the control laws as a function called from inside the interrupt. The pseudo-code for this approach is:

interrupt on timer reaches zero()

{
turn off interrupts()

initiate adc conversion()

reset timer()

turn on interrupts()

}

interrupt on adc conversion completes()

{
turn off interrupts()

read sample()

process sample()

implement control law() /* includes output */

turn on interrupts()

}

main()

{
setup timers()

setup peripherals()

while(1)

{
process data()

}
}

The approach using the high-level MC functions and the other approach using the interrupts are essen-

2



tially the same. In this approach, the interrupt or high-level function is used to grab data from the outside
world and then the processing is done inside the main loop of the code. Using these high-level functions, it
is important to set the sampling rate and the rate of the control-law. The pseudo-code for this method is:
main()

{
setup timers()

setup peripherals()

while(1)

{
set rates()

read data from outside() /* using interrupts or high-level functions */

process data()

}
}

Modular programming is important, because in many systems there are multiple controllers on a single
MC. For instance, in a car the MC will have a controller for cruise-control, another controller for the fuel-
injection system, and so on. Therefore, the controller has to be written in a way that it is able to run
with other controllers. This means, the controller should use as little processing power as possible, should
minimize peripheral usage, and use memory carefully (i.e., not overwrite the memory of other controllers).

An increasingly difficult problem to deal with is that different controllers require different input sampling
rates and different output rates. This difficulty is compounded by the need to share multiple data streams
across different controllers. Dealing with this problem requires careful planning and organization of the
controllers on a single MC. Interestingly, this is also an area of active research because of the ever-increasing
complexity of these systems.

4 Peripherals

MC’s often include several built-in peripherals including timers, memory, and analog ↔ digital convertors.
The timers are usually used to set the sampling rate and the output rate, but they can also be used to get
a measurement of the time (in seconds) elapsed between different events. The analog ↔ digital convertors
often require careful use, since the bits these convertors input and output do not always match up between
each other and with the integer representation used by the MC. For instance, the MC we use in the lab has
16-bit integers, a 10-bit analog → digital convertor, and a 12-bit digital → analog convertor.

5 Fixed-Point Arithmetic

Many MC’s do not have floating-point capabilites; therefore, we must use different techniques to overcome
this limitation. There are two approaches to this, and each has its advantages and disadvantages. One
approach is to emulate floating-points using integer arithmetic. The other approach is to used fixed-point
calculations. Fixed-point calculations directly use integer arithmetic and interpret these computations as
decimal computations. These two approaches might sound the same, but there are important differences
which are beyond the scope of our course - we are more interested in their relative merits.

The advantages of using emulated floating-points are because of their ease-of-programming and high
numerical precision. The disadvantage of using emulated floating-points is that they are extremely slow and
use up a lot of processing power. In practice, only a few calculations which require high precision are done
using emulated floating points, and the rest are done with fixed-point calculations.

The main advantage of fixed-point calculations are that they are very fast. The disadvantage is that
it is hard to program and has limited numerical precision and range (in fact there is a tradeoff that must
be made between precision and range). The basic idea is that we pretend that there is a decimal point in

3



our integer, and do the computations pretending that the decimal point is there. For most purposes, this is
the preferred technique, but most practical programs will use both approaches based upon the needs of the
controller.

6 Sampled Data Systems

Despite having to sample our system, we can still control our system exactly. We can consider the sampling
effects as part of the plant itself. Even the delay can be incorporated into the system model. These techniques
are quite powerful, but still limited. we can only control our plant at the sampled points. This means, that
we cannot control the behavior of the plant in between sampled points. Furthermore, if the sampling rate is
too low, we will still get aliasing issues and time-delays which will lead to either instability or unacceptable
system performance.

4


