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1. Introduction

These notes cover some important topics for the midterm. It is not meant to be a substitute for doing the
readings from the textbook, nor is it meant to be an exhaustive list of all the material that will appear on
the midterm. The goal is to present some of the material that you have already seen in a different manner.

2. State-Space System Representation

A very powerful and very general, mathematical model of a system is the state-space representation.
Intuitively speaking, the state of a system is a collection of variables that tell us how much ”energy” is
currently in the system. Taking this intuition further, this means that the outputs of the system are
completely characterized by both its states and inputs; the same input, but with different initial states,
will lead to different outputs. In this class, we will only be concerned with a less general, state-space
representation of the form:

ẋ = f(x, u)

Four important characteristics about the state-space representation above are:

(1) In general, ẋ, x, and u are vectors.
(2) The system is time-invariant; specifically, the vector field pushing x is not a function of time.
(3) There are no derivatives higher than a first derivative.
(4) The system is not necessarily linear.

The last bullet is an important point, and needs further discussion. If the system is linear, it admits a
simpler set of equations. More importantly, it is much easier to analyze a linear, time-invariant (LTI) system
than it is to analyze a non-linear system. If the system is linear (and time-invariant, by the assumptions
made in class), then our state-space representation is:

ẋ = Ax + Bu

y = Cx + Du

where A, B, C, and D are matrices of the appropriate dimensions. Suppose that x is a column-vector of
dimension nΣ×1, u is a vector of dimension ni×1, and y is a vector of dimension no×1. Then, the matrices
A, B, C, and D will respectively be of dimension nΣ × nΣ, nΣ × ni, no × nΣ, and no × ni.

2.1. Example: Non-Linear System. The simplified equations of motion for a ball that is magnetically
levitated by an electro-magnet is:

mr̈ = mg − ki

r2

where m is the mass of the ball, r is the distance of the ball from the electro-magnet, i is the current provided
to the electro-magnet, g is the gravitational constant, and k is a constant which incorporates the physical
constants of the electro-magnet. This equation is simply a statment that the force on the ball is the sum of
a downward force due to gravity and an upward force due to the magnetic field. Note that we must take
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the negative of this overall force because of the way that we have defined r. To put this into our state-space
form, we define x1 ≡ r, x2 ≡ ṙ, and u1 ≡ i. Thus, our system can be rewritten as:

(

ẋ1

ẋ2

)

=

(

x2

g − ku1

mx2

1

)

3. Linearization

It is often the case that a system that we wish to analyze or control is non-linear. One technique
for handling such systems is to consider perturbations (small-changes) about a nominal trajectory. Such
perturbations can be reasonably approximated by considering the linear terms of the Taylor expansion of
the system representation. In this class, we will only be concerned with perturbations about equilibrium
points.

More succintly, suppose that our system representation is:

ẋ(t) = f(x(t), u(t))

The equilibrium points occur when ẋ(t) = 0, so denote these points as (x0i
, u0i

) ∈ {(x, u)|f(x, u) = 0}. Note
that in general, we will have multiple equillibrium points, and so we can individually linearize the system
about each of these points. The linearization about the equillibrium point (x0i

, u0i
) is:

ẋ = Jx|(x0i
,u0i

) x + Ju|(x0i
,u0i

) u

where Jx and Ju are defined as follows:

Jx =














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. . .

...
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


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
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




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3.1. Example: Non-Linear System (cont.) We will linearize the magnetically levitating ball system
described in the previous example. First, we must determine the equilibrium points of the system, that is
the (x0i

, u0i
) ∈ {(x, u)|f(x, u) = 0}. Here, we will consider a special case in which we wish to set x1 = C.

This condition means that we would like the distance between the electro-magnet and the ball to be C.
Thus, we have:

f(x, u) = 0 ⇒
(

x2

g − ku1

mx2

1

)

=

(

x2

g − ku1

mC2

)

= 0
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This occurs when x01
= (x1, x2)

T = (C, 0)T and u01
= u1 = mgC2

k
. Next, we calculate the Jacobian matrices

associated with this system and then substitute in our equilibrium points:

Jx|(x01
,u01

) =

(

0 1
2ku1

mx3

1

0

)∣

∣

∣

∣

∣

(x01
,u01

)

=

(

0 1
2g
C

0

)

Ju|(x01
,u01

) =

(

0
−k

mx2

1

)∣

∣

∣

∣

∣

(x01
,u01

)

=

(

0
−k

mC2

)

Therefore, the system linearized about the equilibrium point for x1 ≡ r = C is:

ẋ =

(

0 1
2g
C

0

)

x +

(

0
−k

mC2

)

u

For this particular equation, we can easily convert it into a more familiar form. The above state-space
representation for the linearized system can be written as r̈ − 2g

C
r = −k

mC2 i. This is a system representation
that we know how to analyze and control, unlike the non-linear system that we originally started with.

4. Stability

The concept of stability is crucial to the control engineer. Intuitively, the idea of system stability is simple.
Unfortunately, at a practical and technical level the meaning of stability becomes unclear.

There are three major types of stability that we will be concerned with in this class: Bounded-Input
Bounded-Output (BIBO) stability, marginal stability, and asymptotic stability. A system is said to be BIBO
stable if an input that is bounded yields an output that is also bounded. More formally, suppose that we
have a linear, time-invariant system y(t) = L(u), with input u and output y. This system is BIBO stable if
and only if,

given u(t) and Mu 3 |u(t)| < Mu ∀ t, ∃ My 3 |L(u)| = |y(t)| < My ∀ t

This formal definition can be used to derive several important criterion for BIBO stability of LTI systems.
An LTI system is BIBO stable if and only if the impulse response of the LTI system is absolutely integrable.
Also, an LTI system is BIBO stable if and only if all of its poles are in the Open Left-Half Plane (OLHP).
It is important to note that poles on the jω-axis mean that a system is not BIBO stable.

An interesting point to note is that the existence of the Fourier transform of an impulse response is not

enough to guarantee that a system is BIBO stable. An important and surprising example of this is the
ubiqutous sinc function (h(t) = sin πt

πt
) which has a Fourier transform but is not BIBO stable.

Marginal stability is not the same as BIBO stability. A system is marginally stable if it has a bounded
output for some bounded inputs, but unbounded outputs for certain bounded inputs. In terms of an LTI
system, a system with poles on the jω-axis is marginally stable. This is because the system output is
unbounded if we put in a sinusoid whose frequency matches those of the poles on the imaginary axis.
Intuitively, we can think of this in terms of the mechanical concept of resonance. If we vibrate an object
at its resonance frequency, the object will begin to oscillate violently. There are many examples of this,
including examples of bridges that have collapsed because the wind caused the bridge to vibrate at its
resonant frequency.

The last type of stability that we will deal with is asymptotic stability. A system is asymptotically stable
if its impulse response goes to zero as time goes to infinity. For an LTI system, a system is asymptotically
stable if and only if it is BIBO stable. Thus, asymptotic stability and BIBO stability are equivalent for LTI
systems.

5. Nyquist Stability Criterion

The Nyquist stability criterion is surprisingly one of the easier stability criterions to prove, despite the fact
that it requires complex analysis techniques to prove. Fortunately, it does have a fairly intuitive explanation
of why it works and what it does. It is important to keep in mind that the domain and range are seperate
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entities, and to keep these ideas mentally seperate. We will refer to the contour in the domain of G(s) as
d(s). And, we will refer the resulting contour in the range of G(s) as r(s).

Suppose that we evaluate G(s) about a contour r(s). The number of encirclements of r(s) about the
origin depends on the number of poles and zeros contained within d(s). Each additional pole inside of d(s)
makes r(s) encircle the origin −1 times around the origin, and each additional zero inside of d(s) makes r(s)
encircle the origin 1 time around the origin. A Nyquist plot is simply the evaluation of G(s) along a contour
d(s) that completely contains the RHP. Thus, by counting the number of encirclements, we can determine
the number of zeros minus the number of poles that are contained in the RHP.

Now, the transfer function of the canonical feedback gain system is Y (s)
U(s) = G(s)

1+KG(s) . Pretend that we fix

K to a certain value; we can make a Nyquist plot of this function. Call the image of the Nyquist plot r(s).
The number of encirclements of r(s) about the origin will be the number of zeros of 1 + KG(s) in the RHP
plan minus the number of poles of 1 + KG(s) in the RHP. However, the poles of 1 + KG(s) are simply the
poles of the G(s). Thus, by counting the number of encirclements of r(s) about the origin and then adding
the number of poles of G(s) in the RHP, we can calculate the number of zeros of 1 + KG(s) in the RHP.

This is important because the zeros of 1+KG(s) are the poles of the transfer function Y (s)
U(s) = G(s)

1+KG(s) . For

stability, we require no poles in the RHP. This is equivalent to saying that we require no zeros of 1 + KG(s)
in the RHP. We can get the information about the zeros in the RHP from the Nyquist plot of 1 + KG(s).
However, there is a simplifcation that we can make to the procedure. The Nyquist plot of 1 + KG(s) is
mereley the Nyquist plot of G(s) that has been translated to the left by − 1

K
. Therefore, we can just do a

Nyquist plot of G(s) and count the encirclements about − 1
K

. Counting the number of encirclements of r(s)

about s = − 1
K

and then adding the number of poles of G(s) in the RHP, we can calculate the number of
zeros of 1 + KG(s) in the RHP.

To make a Nyquist plot, we evaluate G(s) along a clockwise countour through the RHP. We must make
sure to have the contour avoid any poles lying on the jω-axis, and the portion of the contour not on the axis
must be at infinity. To do this, we seperate the contour into simple curves. These curves take the form of
either straight lines (c1 = jω, for some range of ω) or arcs (c2 = rejθ , for some value of r and some range of
θ). The arcs are either of ”large” radius or ”small” radius. This means, that when you do the plot you can
arbitrarily choose some large and some small radius, depending on the need. If the arc spans the RHP, then
the radius should be large. If the arc is about the jω-axis around a pole, then the radius should be small.
The Nyquist plot is then the combination of the image of G(s) evaluated alone each of these simple curves.

For the most part, the transfer functions that we are dealing with are well-behaved. More rigorously, the
transfer functions are proper or, more commonly, strictly proper. This means that as the frequency goes to
infinity, the transfer function converges to either a constant value or to zero, respectively. Also, we usually
do not have poles along the jω-axis. If this is the case, then we can actually draw a Nyquist plot from a Bode
plot. A Bode plot is mereley the transfer function evaluated over the positive jω-axis. This is essentially
one-half of the Nyquist plot. To get the Nyquist plot from a Bode plot, we take successive points on the
Bode plot and plot the magnitude and phase as a complex number on the complex-plane. We let the points
range from frequency 0 to infinity. However, this is only one half of the Nyquist plot. We must mirror the
plot about the real-axis to generate the full Nyquist plot. An example will be instructive.

5.1. Nyquist/Bode Plot Example. Consider the low-pass filter transfer function:

Y (s)

U(s)
=

1

1 + s

The Bode plot is easy to draw in this case, and is shown in Figure 1.
To calculate the Nyquist plot, we split our contour into three portions:

(1) c1 = jω, for ω ranges from 0 to infinty
(2) c2 = rejθ for r large and θ ranges from π

2 to −π
2

(3) c3 = jω, for ω ranges from negative infinity to 0

Next, we evaluate G(s) alone each of these three curves individually. We start with c1:
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G(s)|c1
=

1

1 + jω
⇒|G(s)|c1

=
1√

1 + ω2

∠ G(s)|c1
= −tan−1ω

Along c2, we have r large, and we get:

G(s)|c2
=

1

1 + rejθ
⇒|G(s)|c2

≈ 1

r

∠ G(s)|c2
≈ −θ

Along c3, we have:

G(s)|c3
=

1

1 − jω
⇒|G(s)|c3

=
1√

1 + ω2

∠ G(s)|c3
= tan−1ω

Plotting each of these segments over the corresponding ranges of ω and θ yields the Nyquist plot shown
in Figure 2.

However, we can determine the Nyquist plot from the Bode plot. Observe how the Nyquist plot along c2

is essentially of magnitude zero, since we have r large. Thus, the Nyquist plot is completeley characterized
by the Nyquist plot along c1 and c3. But, there is something interesting with this fact. The Nyquist plot
along c1 is simply the Bode plot, and the Nyquist plot along c3 is the mirror image of the Bode plot.
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Figure 1. Bode Plot of Y (s)
U(s)
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Figure 2. Nyquist Plot of Y (s)
U(s)
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