I have in previous papers defined a “Matrix” as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.

J.J. Sylvester (1814 — 1897)
Outline

1 Orthogonalization: Gram-Schmidt Procedure
 - Orthogonalization
 - Projection on a line
 - Gram-Schmidt procedure

2 QR Decomposition
 - Basic idea
 - Full column rank case
 - General case
Orthonormal basis

A basis \((u_i)_{i=1}^n\) is said to be /orthogonal/ if \(u_i^T u_j = 0\) if \(i \neq j\). If in addition, \(\|u_i\|_2 = 1\), we say that the basis is \textit{orthonormal}.

\textit{Example:} An orthonormal basis in \(\mathbb{R}^3\). The collection of vectors \(\{u_1, u_2\}\), with

\[
\begin{align*}
u_1 &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\
u_2 &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix},
\end{align*}
\]

forms an orthonormal basis of \(\mathbb{R}^2\).
What is orthogonalization?

Orthogonalization refers to a procedure that finds an orthonormal basis of the span of given vectors.

Given vectors $a_1, \ldots, a_k \in \mathbb{R}^n$, an orthogonalization procedure computes vectors $q_1, \ldots, q_n \in \mathbb{R}^n$ such that

$$S := \text{span} \{a_1, \ldots, a_k\} = \text{span} \{q_1, \ldots, q_r\},$$

where r is the dimension of S, and

$$q_i^T q_j = 1 \ (i \neq j), \quad q_i^T q_i = 1, \quad 1 \leq i, j \leq r.$$

That is, the vectors (q_1, \ldots, q_r) form an orthonormal basis for the span of the vectors a_1, \ldots, a_k.

Projection on a line

A basic step in the procedure consists in projecting a vector on a line passing through zero. Consider the line

\[L(q) := \{ tq : t \in \mathbb{R} \}, \]

where \(q \in \mathbb{R}^n \) is given, and normalized (\(\|q\|_2 = 1 \)).

The projection of a given point \(a \in \mathbb{R}^n \) on the line is a vector \(v \) located on the line, that is closest to \(a \) (in Euclidean norm). This corresponds to a simple optimization problem:

\[\min_t \|a - tq\|_2. \]

The vector \(a_{\text{proj}} := t^* q \), where \(t^* \) is the optimal value, is referred to as the projection of \(a \) on the line \(L(q) \). The solution of this simple problem has a closed-form expression:

\[a_{\text{proj}} = (q^T a)q. \]
Interpretation

Note that the vector \mathbf{x} can now be written as a sum of its projection and another vector that is orthogonal to the projection:

$$a = (a - a_{\text{proj}}) + a_{\text{proj}} = (a - (q^T a)q) + (q^T a)q,$$

where $a - a_{\text{proj}} = a - (q^T a)q$ and $a_{\text{proj}} = (q^T a)q$ are orthogonal. The vector $a - a_{\text{proj}}$ can be interpreted as the result of removing the component of \mathbf{a} along q.

Gram-Schmidt procedure

The Gram-Schmidt procedure is a particular orthogonalization algorithm. The basic idea is to first orthogonalize each vector w.r.t. previous ones; then normalize result to have norm one.

Let us assume that the vectors a_1, \ldots, a_n are linearly independent. The GS algorithm is as follows.

Gram-Schmidt procedure:

1. Set $\tilde{q}_1 = a_1$.
2. Normalize: set $q_1 = \tilde{q}_1/\|\tilde{q}_1\|_2$.
3. Remove component of q_1 in a_2: set $\tilde{q}_2 = a_2 - (a_2^T q_1) q_1$.
4. Normalize: set $q_2 = \tilde{q}_2/\|\tilde{q}_2\|_2$.
5. Remove components of q_1, q_2 in a_3: set $\tilde{q}_3 = a_3 - (a_3^T q_1) q_1 - (a_3^T q_2) q_2$.
6. Normalize: set $q_3 = \tilde{q}_3/\|\tilde{q}_3\|_2$.
7. Etc.

The GS process is well-defined, since at each step $\tilde{q}_i \neq 0$ (otherwise this would contradict the linear independence of the a_i’s).
The image shows the GS procedure applied to the case of two vectors in two dimensions. We first set the first vector to be a normalized version of the first vector a_1. Then we remove the component of a_2 along the direction q_1. The difference is the (un-normalized) direction \tilde{q}_2, which becomes q_2 after normalization. At the end of the process, the vectors q_1, q_2 have both unit length and are orthogonal to each other.
Geometry

Figure: Geometry of QR: the third step in \mathbb{R}^3.
Case with dependent vectors

It is possible to modify the algorithm to allow it to handle the case when the a_i’s are not linearly independent. If at step i, we find $\tilde{q}_i = 0$, then we directly jump at the next step.

Modified Gram-Schmidt procedure: set $r = 0$. for $i = 1, \ldots, n$:

1. set $\tilde{q} = a_i - \sum_{j=1}^{r} (q_j^T a_i)q_j$.
2. if $\tilde{q} \neq 0$, $r = r + 1$; $q_r = \tilde{q}/\|\tilde{q}\|_2$.

On exit, the integer r is the dimension of the span of the vectors a_1, \ldots, a_k.
QR decomposition

Basic idea

The basic goal of the QR decomposition is to factor a matrix as a product of two matrices (traditionally called Q, R, hence the name of this factorization). Each matrix has a simple structure which can be further exploited in dealing with, say, linear equations.

The QR decomposition is nothing else than the Gram-Schmidt procedure applied to the columns of the matrix, and with the result expressed in matrix form.
Full column rank case

Consider a $m \times n$ matrix $A = (a_1, \ldots, a_n)$, with each $a_i \in \mathbb{R}^m$ a column of A.

Assume first that the a_i’s (the columns of A) are linearly independent. That is, A is full column-rank (its nullspace is $\{0\}$). Each step of the G-S procedure can be written as

$$a_i = (a_i^T q_1) q_1 + \ldots + (a_i^T q_{i-1}) q_{i-1} + \|\tilde{q}_i\|_2 q_i, \quad i = 1, \ldots, n.$$

We write this as

$$a_i = r_{i1} q_1 + \ldots + r_{i,i-1} q_{i-1} + r_{ii} q_i, \quad i = 1, \ldots, n,$$

where $r_{ij} = (a_i^T q_j) \ (1 \leq j \leq i - 1)$ and $r_{ii} = \|\tilde{q}_{ii}\|_2$.

Since the q_i's are unit-length and normalized, the matrix $Q = (q_1, \ldots, q_n)$ satisfies $Q^T Q = I_n$. The QR decomposition of a $m \times n$ matrix A thus allows to write the matrix in /factored/ form:

$$A = QR, \quad Q = \begin{pmatrix} q_1 & \cdots & q_n \end{pmatrix}, \quad R = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & & r_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}$$

where Q is a $m \times n$ matrix with $Q^T Q = I_n$, and R is $n \times n$, upper-triangular.
Example

\[
A = \begin{pmatrix}
1 & 2 & 7 \\
3 & 4 & 8 \\
5 & 6 & 1
\end{pmatrix} = QR, \quad Q = \begin{pmatrix}
-0.1690 & 0.8971 & 0.4082 \\
-0.5071 & 0.2760 & -0.8165 \\
-0.8452 & -0.3450 & 0.4082
\end{pmatrix}, \\
R = \begin{pmatrix}
-5.9161 & -7.4374 & -6.0851 \\
0 & 0.8281 & 8.1428 \\
0 & 0 & -3.2660
\end{pmatrix}.
\]
Case when the columns are not independent

When the columns of A are not independent, at some step of the G-S procedure we encounter a zero vector \tilde{q}_j, which means a_j is a linear combination of a_{j-1}, \ldots, a_1. The “modified” Gram-Schmidt procedure then simply skips to the next vector and continues.

In matrix form, we obtain $A = QR$, with $Q \in \mathbb{R}^{m \times r}$, $r = \text{Rank}(A)$, and R has an upper staircase form, for example:

$$R = \begin{pmatrix} * & * & * & * & * & * & * \\ 0 & 0 & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \end{pmatrix}.$$

(This is simply an upper triangular matrix with some rows deleted. It is still upper triangular.)
Reordering

We can permute the columns of R to bring forward the first non-zero elements in each row:

$$R = \begin{pmatrix} R_1 & R_2 \end{pmatrix} P^T, \quad \begin{pmatrix} R_1 | R_2 \end{pmatrix} := \begin{pmatrix} * & * & * & | & * & * & * \\ 0 & * & 0 & | & * & * & * \\ 0 & 0 & * & | & 0 & 0 & * \end{pmatrix},$$

where P is a permutation matrix (that is, its columns are the unit vectors in some order), whose effect is to permute columns. (Since P is orthogonal, $P^{-1} = P^T$.) Now, R_1 is square, upper triangular, and invertible, since none of its diagonal elements is zero.
Reordering: matrix format

The QR decomposition can be written

\[AP = Q \begin{pmatrix} R_1 & R_2 \end{pmatrix}, \]

where

1. \(Q \in \mathbb{R}^{m \times r} \), \(Q^T Q = I_r \);
2. \(r \) is the rank of \(A \);
3. \(R_1 \) is \(r \times r \) upper triangular, invertible matrix;
4. \(R_2 \) is a \(r \times (n - r) \) matrix;
5. \(P \) is a \(m \times m \) permutation matrix.