1. Higher-Order Markov Chains

Let k be a fixed positive integer. A stochastic process $(X_n)_{n \in \mathbb{N}}$ taking values in a discrete state space \mathcal{X} is called a kth order (time homogeneous) Markov chain if for all $n \in \mathbb{N}$ and all feasible sequences $x_0, x_1, \ldots, x_{n+k} \in \mathcal{X}$,
\[
P(X_{n+k} = x_{n+k} \mid X_0 = x_0, X_1 = x_1, \ldots, X_{n+k-1} = x_{n+k-1}) = P_k(x_{n+k} \mid x_n, \ldots, x_{n+k-1}).
\]
In other words, the transition to the next state depends only on the previous k states. For example, if X_n represents the position of a particle moving with constant velocity at time n, then the system is a second-order Markov chain because the previous two position measurements are needed to infer the particle’s velocity.

Show that we can “embed” $(X_n)_{n \in \mathbb{N}}$ into a first-order Markov chain $(Z_n)_{n \in \mathbb{N}}$ with an augmented state space, in the sense that X_n can be recovered from Z_n. This allows us to apply algorithms such as the Viterbi algorithm to systems with higher orders of dependence.

2. Most Likely Sequence of States

In this problem, we give an example of an HMM and a sequence of observations which demonstrates that the most likely sequence of hidden states (i.e., the output of the Viterbi algorithm) is not the same as computing the most likely state at each time. Your task is to verify that the following example works:

Consider a HMM with two states $\{0, 1\}$ and the hidden state is observed through a BSC with error probability 1/3. The hidden state transitions according to $P(0, 0) = P(1, 1) = 3/4$. Assume that the initial state is equally likely to be 0 or 1. We see the observation 0 at time 0 and 1 at time 1.

3. EM for Censored Exponential Data

A common application of the EM algorithm is for censored data in statistics. Let n be a fixed positive integer denoting the sample size; let X_1, \ldots, X_n be i.i.d. Exponential(λ) random variables; let c_1, \ldots, c_n be known positive constants, and suppose that we observe $Y_i := \mathbb{1}\{X_i > c_i\}$ for each $i = 1, \ldots, n$. In other words, we do not get to observe the actual values of X_1, \ldots, X_n. We only get to observe whether the ith data point is greater than the level c_i. We would
like to find the MLE for the rate \(\lambda \). If we knew the values of \(X_1, \ldots, X_n \), then we would use \(\hat{\lambda} := n / (\sum_{i=1}^{n} X_i) \).

Applying the EM algorithm to the following problem, we will alternate between the following steps. First, initialize a guess \(\hat{\lambda}(0) \). Then, for \(t = 0, 1, 2, \ldots \):

- **E step**: Compute \(\bar{X}^{(t)} := E_{\hat{\lambda}(t)}[n^{-1} \sum_{i=1}^{n} X_i \mid Y_1, \ldots, Y_n] \), where the notation \(E_{\hat{\lambda}(t)} \) means you should calculate the expectation as if \(X_1, \ldots, X_n \) are i.i.d. \(\text{Exponential}(\hat{\lambda}(t)) \).

- **M step**: The next estimate of the parameter is \(\hat{\lambda}(t+1) := 1/\bar{X}^{(t)} \).

(Do not worry about why the E and M steps look the way they do.)

(a) Verify that the MLE estimate of \(\lambda \) given \(X_1, \ldots, X_n \) is \(\hat{\lambda} = n / (\sum_{i=1}^{n} X_i) \).

(b) Explicitly write out what the E step looks like.

(c) Write out the joint PMF for the observations \(Y_1, \ldots, Y_n \). Is it possible to find the MLE for \(\lambda \) given \(Y_1, \ldots, Y_n \) directly?

4. **EM for a Simple HMM**

Consider an HMM \((X_i)_{i \in \mathbb{N}} \) on the state space \(\{0, 1\} \), where

\[
P(0, 1) = P(1, 0) = \theta \in (0, 1)
\]

is an unknown parameter. The hidden state is observed through a BSC with known error probability \(\epsilon \in (0, 1) \); let the observations be denoted \((Y_i)_{i \in \mathbb{N}} \). For a fixed positive integer \(n \), suppose that we observe \(Y_0, Y_1, \ldots, Y_n \). The initial hidden state is equally likely to be 0 or 1.

(a) What is the MLE for \(\theta \) given \(X_1, \ldots, X_n \)? (Use the notation

\[
T = \sum_{i=1}^{n} 1\{X_i \neq X_{i-1}\}
\]

for the number of times that the hidden state switches between 0 and 1.)

(b) We will now derive an EM algorithm to estimate \(\theta \) given \(Y_1, \ldots, Y_n \). Initialize a guess \(\hat{\theta}^{(0)} \). For \(t = 0, 1, 2, \ldots \):

- **E step**: Compute \(\bar{X}^{(t)} := E_{\hat{\theta}(t)}[n^{-1} T \mid Y_0, Y_1, \ldots, Y_n] \).
- **M step**: In this case, the next parameter estimate is \(\hat{\theta}(t+1) := \bar{X}^{(t)} \).

Explicitly write out what the E step is.