Problem 1. Statistical Estimation
Given $X \in \{0, 1\}$, the random variable Y is exponentially distributed with rate $3X + 1$.

(a) Assume $\Pr(X = 1) = p \in (0, 1)$ and $\Pr(X = 0) = 1 - p$. Find the MAP estimate of X given Y.

(b) Find the MLE of X given Y.

Solution 1. (a) We know that when $X = 0$, $f_{Y \mid X}(y \mid 0) = \exp(-y)\mathbf{1}\{y > 0\}$ and when $X = 1$, $f_{Y \mid X}(y \mid 1) = 4\exp(-y)\mathbf{1}\{y > 0\}$. The MAP maximizes $f_{X,Y}(x,y)$ over x for the given observation y, which is equivalent to maximizing $f_{X,Y}(x,y)$. Thus,

$$f_{X,Y}(0,y) = (1 - p)\exp(-y)\mathbf{1}\{y > 0\},$$
$$f_{X,Y}(1,y) = 4p\exp(-4y)\mathbf{1}\{y > 0\},$$

and

$$\text{MAP}[X \mid Y] = 1 \iff 4p\exp(-4Y) > (1 - p)\exp(-Y)$$

which gives

$$\text{MAP}[X \mid Y] = \mathbf{1}\left\{ Y < \frac{1}{3}\ln \frac{4p}{1 - p} \right\}.$$

(b) The MLE is the MAP estimate with the prior probability p set to 1/2.

$$\text{MLE}[X \mid Y] = \mathbf{1}\left\{ Y < \frac{1}{3}\ln 4 \right\} = \mathbf{1}\{Y < 0.462\}.$$

Problem 2. Exponential: MLE & MAP
The random variable X is exponentially distributed with mean 1. Given X, the random variable Y is exponentially distributed with rate X.

1. Find $\text{MLE}[X \mid Y]$.
2. Find $\text{MAP}[X \mid Y]$.

Solution 2. 1. The density of Y, given $X = x$, is $f(y) = x\exp(-xy)$ for $y > 0$, so $\ln f(y) = \ln x - xy$. To maximize this over x, we differentiate to obtain $1/x - y = 0$, so $x = 1/y$, that is, $\text{MLE}[X \mid Y] = 1/Y$.

2. The posterior density of X is

$$f_{X|Y}(x \mid y) \propto f_{Y|X}(y \mid x)f_X(x) = x \exp(-xy) \exp(-x)$$

$$= x \exp(-x(1+y))$$

so we can maximize $\ln x - x(1+y)$ over x. Differentiating, we have $1/x - 1 - y = 0$, or $1/x = 1 + y$. Hence, $MAP[X \mid Y] = 1/(1 + Y)$.

Problem 3. Laplace Prior & ℓ^1-Regularization

Suppose you draw n i.i.d. data points $(x_1, y_1), \ldots, (x_n, y_n)$, where n is a positive integer and the true relationship is $Y = WX + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. (That is, Y has a linear dependence on X, with additive Gaussian noise.) Further suppose that W has a prior distribution with density

$$f_W(w) = \frac{1}{2\beta} e^{-|w|/\beta}, \quad \beta > 0.$$

(This is known as the **Laplace distribution**.) Show that finding the MAP estimate of W given the data points $\{(x_i, y_i) : i = 1, \ldots, n\}$ is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^n (y_i - wx_i)^2 + \lambda|w|$$

(you should determine what λ is). This is interpreted as a one-dimensional ℓ^1-regularized least-squares criterion, also known as LASSO.

Solution 3. The likelihood for W is

$$\mathcal{L}(w \mid (x_1, y_1), \ldots, (x_n, y_n)) \propto \mathcal{L}((x_1, y_1), \ldots, (x_n, y_n) \mid W = w)f_W(w)$$

(technically, the expression on the right should be divided by the likelihood of the data, but this has no dependence on w, so we omit the denominator for simplicity)

$$= \prod_{i=1}^n \mathcal{L}((x_i, y_i) \mid W = w)f_W(w)$$

(the data points are conditionally independent given W)

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - wx_i)^2}{(2\sigma^2)}\right) \frac{1}{2\beta} \exp\left(-\frac{|w|}{\beta}\right)$$

(again, we throw out constant factors that do not depend on the data points or w).
We wish to maximize this expression w.r.t. w, but we will find it more convenient to take the log-likelihood instead.

$$\ell(w \mid (x_1, y_1), \ldots, (x_n, y_n)) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - wx_i)^2 - \frac{1}{\beta} |w|.$$

Since we want to maximize the log-likelihood, this is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w|,$$

where $\lambda = 2\sigma^2 / \beta$.
