1. MMSE from Joint Density
 Let the joint density of two random variables X and Y be
 \[f_{X,Y}(x,y) = \frac{1}{4}(2x+y)1\{0 \leq x \leq 1\}1\{0 \leq y \leq 2\}. \]
 First show that this is a valid joint distribution. Suppose you observe Y drawn from this joint density. Find $\text{MMSE}[X \mid Y]$.

2. MMSE for Jointly Gaussian
 Let $[X \ Y \ Z]^T \sim \mathcal{N}(\mu, \Sigma)$, and
 \[
 \mu = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
 \]
 and
 \[
 \Sigma = \begin{bmatrix} 5 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 2 \end{bmatrix}.
 \]
 Find $\mathbb{E}[X \mid Y,Z]$.

3. Recursive JG MMSE
 Let $(V_n, n \in \mathbb{N})$ be i.i.d. $\mathcal{N}(0, \sigma^2)$ and independent of $X_0 = \mathcal{N}(0, \sigma^2)$. Define
 \[X_{n+1} = aX_n + V_n, \quad n \in \mathbb{N}. \]
 (a) What is the distribution of X_n, where n is a positive integer?
 (b) Find $\mathbb{E}[X_{n+m} \mid X_n]$ for $m, n \in \mathbb{N}$, $m \geq 1$.
 (c) Find u so that the distribution of X_n is the same for all $n \in \mathbb{N}$.