EECS 126: Probability and Random Processes

Discussion 4

Note: Please work on the problems before the discussion session.

Problem 2. The annual premium of a special kind of insurance starts at $\$ 1000$ and is reduced by 10% after each year where no claim has been filed. The probability that a claim is filed in a given year is 0.05 , independently of preceding years. What is the PMF of the total premium paid up to and including the year when the first claim is filed?

Problem 3. Let X be a discrete random variable that is uniformly distributed over the set of integers in the range $[a, b]$, where a and b are integers with $a<0<b$. Find the PMF of the random variables $\max \{0, X\}$ and $\min \{0, X\}$.

Problem 9. Imagine a TV game show where each contestant i spins an infinitely calibrated wheel of fortune, which assigns him/her with some real number with a value between 1 and 100. All values are equally likely and the value obtained by each contestant is independent of the value obtained by any other contestant.
(a) Find $\mathbf{P}\left(X_{1}<X_{2}\right)$.
(b) Find $\mathbf{P}\left(X_{1}<X_{2}, X_{1}<X_{3}\right)$.
(c) Let N be the integer-valued random variable whose value is the index of the first contestant who is assigned a smaller number than contestant 1. As an illustration, if contestant 1 obtains a smaller value than contestants 2 and 3 but contestant 4 has a smaller value than contestant $1\left(X_{4}<X_{1}\right)$, then $N=4$. Find $\mathbf{P}(N>n)$ as a function of n.
(d) Find $\mathbf{E}[N]$, assuming an infinite number of contestants.

Problem 11. Let X_{1}, \ldots, X_{n} be independent, identically distributed random variables with common mean and variance. Find the values of c and d that will make the following formula true:

$$
\mathbf{E}\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right]=c \mathbf{E}\left[X_{1}\right]^{2}+d\left(\mathbf{E}\left[X_{1}\right]\right)^{2}
$$

