EECS 126: Probability and Random Processes

Discussion 1

Note: Please work on the problems before the discussion session.

Problem 1. We are given that \(P(A) = 0.55 \), \(P(B^c) = 0.35 \), and \(P(A \cup B) = 0.75 \). Determine \(P(B) \) and \(P(A \cap B) \).

Problem 4. Let \(A \) and \(B \) be two sets with a finite number of elements. Show that the number of elements in \(A \cap B \) plus the number of elements in \(A \cup B \) is equal to the number of elements in \(A \) plus the number of elements in \(B \).

Problem 11. Show the following generalizations of the formula

\[
P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C).
\]

(a) Let \(A, B, C, \) and \(D \) be events. Then

\[
P(A \cup B \cup C \cup D) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C) + P(A^c \cap B^c \cap C^c \cap D).
\]

(b) Let \(A_1, A_2, \ldots, A_n \) be events. Then

\[
P \left(\bigcup_{k=1}^{n} A_k \right) = P(A_1) + P(A_1^c \cap A_2) + P(A_1^c \cap A_2^c \cap A_3) + \cdots + P(A_1^c \cap \cdots \cap A_{n-1}^c \cap A_n).
\]

Problem 30. We are told that events \(A \) and \(B \) are independent. In addition, events \(A \) and \(C \) are independent. Is it true that \(A \) is independent of \(B \cup C \)? Provide a proof or counterexample to support your answer.

Problem 21. A peculiar six-sided die has uneven faces. In particular, the faces showing 1 or 6 are \(1 \times 1.5 \) inches, the faces showing 2 or 5 are \(1 \times 0.4 \) inches, and the faces showing 3 or 4 are \(0.4 \times 1.5 \) inches. Assume that the probability of a particular face coming up is proportional to its area. We independently roll the die twice. What is the probability that we get doubles?