

Lab 3 - Part I

- Purpose is to test your radio interface
 - Learn about what you can do
 - Work with the SDR and the radio
- Start working on it now!

M. Lustig, EECS UC Berkeley

Buffered Audio I/O processing

- Qin = Queue.Queue()
- Qout = Queue.Queue()
- # create a pyaudio object
- p = pyaudio.PyAudio()
- . # find the device numbers for builtin I/O and the USB
- din, dout, dusb = audioDevNumbers(p)
- # initialize a recording thread. The USB device only supports 44.1KHz sampling rate
- t_rec = threading.Thread(target = record_audio, args = (Qin, p, 44100, dusb))
- · # initialize a playing threa
- t_play = threading.Thread(target = play_audio, args = (Qout, p, 44100, dout))
- # start the recording and playing threads
- t_rec.start()
- t play starti
- # record and play about 10 seconds of audio 430*1024/44100 = 9.98 s
- for n in range(0,430):
- samples = Qin.get(
- # You can add code here to do processing on samples in chunks of 1024
- # you will have to implement an overlap an add, or overlap an save to ge
- · # continuity between chunks
- Qout.put(samples)
- p.terminate()

M. Lustig, EECS UC Berkeley

5

Testing VOX transmit

- · You want to find the pulse length that is:
 - Long enough to activates the VOX
 - Short enough that radio does not start transmitting the tone
 - Add zeros so the signal sent immediately after will be heard -- good to have extra delay to let squelch on reciev radio to open

M. Lustig, EECS UC Berkeley

Measure Frequency Response

- Of the Radio Audio input
 - Play a chirp
 - Listen using SDR
 - Demodulate

M. Lustig, EECS UC Berkeley

7

Projects

- Select a project by next Friday
 - Submit 2 paragraph project proposal on bspace
 - Includes Topic and the scope of the project
- Project Deliverables
 - Software
 - Demo
 - A few slides / Poster

Project Topics

- Default: SSTV Transceiver System
 - Implement a Xeiver for one of the ham SSTV protocols. For example Martin M1/ Scottie S1-4
 - Transmitter straightforward
 - Good receiver system makes all the difference

M. Lustig, EECS UC Berkeley

1

More project ideas

DTMF/Voice Controlled something

- Message board
- Answering system
- Voice Mail
- Cross-band FM repeater chat room with a control channel
 - SDR receives large band
 - Transmits combined signals on another channel
 - Need to register or have a code to join... maybe?

Other Project Ideas

- Come up with a new SSTV Protocol
 - Analog or Digital
- Video Protocol
- Methods to overlay digital information over voice
- Digital Voice Implement an algorithm or come up with your own

M. Lustig, EECS UC Berkeley

M. Lustig, EECS UC Berkeley

1

More Projects

- Simple voice recognition
- Implementation / Invention of ANY useful ham protocol
- High-Quality audio by time-stretching or scrambling

M. Lustig, EECS UC Berkeley

More Challenging Projects

- Separation of two interfering FM signals for repeaters
- A fancy communication channel OFDM/ QAM over voice
- Phased Array RTL-Receiver
 - Passive Radar
 - Direction detection
- Weak signal Communication with FM radios and SDR

M. Lustig, EECS UC Berkeley

Weak Signal

- Can be extremely low-rate
 - -Telemetry
 - Bounce
 - Use AM receive with FM transmitters

M. Lustig, EECS UC Berkeley

Magnitude Response

Magnitude of products is product of magnitudes

$$|H(e^{j\omega})| = \left| \frac{b_0}{a_0} \right| \cdot \frac{\prod_{k=0}^{M} |1 - c_k e^{-j\omega}|}{\prod_{k=0}^{N} |1 - d_k e^{-j\omega}|}$$

Consider one of the poles:

$$|1 - d_k e^{-j\omega}| = |e^{+j\omega} - d_k| = |v_1|$$

M. Lustig, EECS UC Berkeley

Magnitude Response Example

Example:

$$H(z) = 0.05 \frac{1 + z^{-1}}{1 - 0.9z^{-1}}$$

$$|H(z)| = 0.05 \frac{|v_2|}{|v_1|}$$

M. Lustig, EECS UC Berkeley

Phase response

Example:
$$H(e^{j\omega})=e^{j\omega n_d} \ \leftrightarrow \ h[n]=\delta[n-n_d]$$

$$|H(e^{j\omega})| = 1$$

$${
m arg}[H(e^{j\omega})] = -\omega n_d$$
 ARG is the wrapped phase arg is the unwrapped phase

M. Lustig, EECS UC Berkeley

Group delay

To characterize general phase response, look at the group delay:

$$\operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \operatorname{arg}[H(e^{j\omega})] \}$$

For linear phase system, the group delay is n_d

M. Lustig, EECS UC Berkeley

 $\operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \arg[H(e^{j\omega})] \}$

Input

Output

For narrowband signals, phase response looks like a linear phase

M. Lustig, EECS UC Berkeley

Group delay math $grd \left[H(e^{jw})\right] = -\sum_{k=1}^{N} grd \left[1 - d_k e^{-jw}\right] \\
+ \sum_{k=1}^{M} grd \left[1 - c_k e^{-jw}\right]$ Look at each factor: $arg \left[1 - re^{j\theta}e^{-jw}\right] = +ar^{-1}\left(\frac{rsin(w-\theta)}{1 - rcos(w-\theta)}\right) \\
grd \left[1 - re^{j\theta}e^{-jw}\right] = \frac{r^2 - rcos(w-\theta)}{|1 - re^{j\theta}e^{-jw}|^2}$ M. Lustig, EECS UC Berkeley

Look at a zero lying on the real axis $\frac{\text{Geometric Interpretation (for } \theta=0)}{\text{arg } [1-re^{-jw}] = \text{arg } [e^{jw}-r] - \text{arg } [e^{jw}]}$ $\frac{\text{Im}}{\text{arg } [1-re^{-jw}]}$ $\frac{\text{grd } [1-re^{-jw}]}{\pi}$ $\frac{2\pi}{\pi}$ $\frac{2\pi}{\pi}$

0+0 => shift to the right by 0

M. Lustig, EECS UC Berkeley