Network Management and
Software-Defined Networking (SDN)

EE122 Fall 2013
Scott Shenker
(understudy to Sylvia Ratnasamy)

Goal for today

* Provide the "why” of software-defined networking
—Some history
—3Some gossip
—And an exercise in architectural thinking

* Not much of the “what”
—but enough that some of you will want to know more

Software-Defined Networking:
Caveats and Context

Caveats

* | cofounded a startup (Nicira) that worked on SDN
— My views may be biased
— | have no financial interest in the outcome, just ego

* SDN is not a revolutionary technology...
—...Just a way of organizing network functionality

« But that's all the Internet architecture is....
— The Internet architecture isn't clever, but it is deeply wise
—We know SDN isn’t clever, but we hope it is wise....

Context
 Where did SDN come from?

* And what is the state of networking as a field?

* Keep context in mind as you learn about SDN...

Where did SDN come from?

« ~2004:. Research on new management paradigms
—RCP, 4D [Princeton, CMU,....]
— SANE, Ethane [Stanford/Berkeley]
— Industrial efforts with similar flavor (not published)

« 2008: Software-Defined Networking (SDN)
—NOX Network Operating System [Nicira]

— OpenFlow switch interface [Stanford/Nicira]

« 2011: Open Networking Foundation
—Board: Google,Yahoo,Verizon,DT,Msft, Fbook,NTT,GS
—Members: Cisco, Juniper, HP, Dell, Broadcom, IBM,.....

Current Status of SDN

* SDN widely accepted as “future of networking”
—More than 100 members in ONF (almost “everyone”)

— Commercialized, in production use (few places)
e E.g., controls Google’'s WAN; NTT moving to deploy

* An insane level of SDN hype, and backlash...
— SDN doesn’t work miracles, merely makes things easier

 But the real question is: why the rapid adoption?

The Field of Networking...

« Research built a great artifact: Internet
— Mostly unrelated to academic research which came later

* CS networking now largely the study of the Internet

* Also interesting research in wireless, optical
—Much of it is EE research into underlying technologies
—Some wireless research (such at Katabi at MIT) broader

« But we failed to create an academic discipline

Building an Artifact, Not a Discipline

 Other fields in “systems™. OS, DB, etc.
— Teach basic principles
— Are easily managed
— Continue to evolve

* Networking:
— Teach big bag of protocols
— Notoriously difficult to manage
— Evolves very slowly

 Networks are much more primitive and less
understood than other computer systems

We are left with two key questions

* Why the rapid adoption of SDN?
—What problem is it solving?

* Why is networking behind other fields in CS?
—What is missing in the field?

* The answers are related, but will unfold slowly

10

Network Management

11

What is Network Management?

* Recall the two “planes”

- Data plane: forwarding packets
—Based on local forwarding state

« Control plane: computing that forwarding state
— Involves coordination with rest of system

* Broad definition of “network management”:
— Everything having to do with the control plane

12

Original goals for the control plane

« Basic connectivity: route packets to destination
—Local state computed by routing protocols
— Globally distributed algorithms

* Interdomain policy: find policy-compliant paths
—Done by fully distributed BGP

 For long time, these were the only relevant goals!
—What other goals are there in running a network?

13

Isolation

L2 bcast protocols often used for discovery
— Useful, unscalable, invasive

« Want multiple logical LANs on a physical network
— Retain usefulness, cope with scaling, provide isolation

* Use VLANSs (virtual LANs) tags in L2 headers

— Controls where broadcast packets go
— Gives support for logical L2 networks
— Routers connect these logical L2 networks

* No universal method for setting VLAN state 14

Access Control

* Operators want to limit access to various hosts
—Don't let laptops access backend database machines

 This can be imposed by routers using ACLs
—ACL: Access control list

« Example entry in ACL: <header template; drop>

—If not port 80, drop
—If source address = X, drop

15

Traffic Engineering

* Want to avoid persistent overloads on links
* Choose routes to spread traffic load across links

« TwWo main methods:

— Setting up MPLS tunnels
— Adjusting weights in OSPF

» Often done with centralized computation

— Take snapshot of topology and load
— Compute appropriate MPLS/OSPF state
—Send to network

16

Network management has many goals

* Achieving these goals is job of the control plane...

* ...which currently involves many mechanisms

 Globally distributed: routing algorithms
« Manual/scripted configuration: ACLs, VLANs

* Centralized computation: Traffic engineering

17

Bottom Line

« Many different control plane mechanisms
« Each designed from scratch for their intended goal

 Encompassing a wide variety of implementations
— Distributed, manual, centralized,...

* Network control plane is a complicated mess!

18

How Did We Get Into This Mess?

19

How Have We Managed To Survive?

* Net. admins miraculously master this complexity
— Understand all aspects of networks
—Must keep myriad details in mind

* This ablility to master complexity is both a blessing
—...and a curse!

20

4)
A Simple Story About Complexity....

 ~1985: Don Norman visits Xerox PARC
— Talks about user interfaces and stick shifts

J

What Was His Point?

* The ability to master complexity is valuable
— But not the same as the ability to extract simplicity

* Each has its role:
—When first getting systems to work, master complexity
—When making system easy to use, extract simplicity

* You will never succeed in extracting simplicity

—If you don’t recognize it is a different skill set than
mastering complexity

What Is My Point?

* Networking has never made the distinction...

— And therefore has never made the transition from
mastering complexity to extracting simplicity

« Still focused on mastering complexity
— Networking “experts” are those that know all the details

» Extracting simplicity lays intellectual foundations
— By providing elegant conceptual formulations

* This is why networking has weak foundation
—We are still building the artifact, not the discipline

Have answered one of our questions

* The reason networking is not a discipline is
because it has not sought to extract simplicity

— Other fields, such as OS, DB, etc, have
— Those fields are more mature

» Extracting simplicity is also how you generalize to

larger, more complicated systems
—So it has practical advantages as well....

Forcing people to make the transition

* We are really good at mastering complexity
—And it has worked for us for decades, why change?

* How do you make people change?
—Make them cry!

* A personal story about algebra and complexity
— School problems:
3Xx +2y=8 X+y=3
— My father’s problems:
327x + 26y = 8757 45x + 57y = 7776

25

Making Network Operators Cry...

26

Step 1: Large datacenters
* 100,000s machines: 10,000s switches

* This is pushing the limits of what we can handle....

27

Step 2: Multiple tenancy

 Large datacenters can host many customers

* Each customer gets their own logical network

— Customer should be able to set policies on this network
— ACLs, VLANSs, etc.

* If there are 1000 customers, that adds 3 oom
—Where oom = orders of magnitude

* This goes way beyond what we can handle

28

Network Operators Are Now Weeping...

* They have been beaten by complexity
 The era of ad hoc control mechanisms is over
* We need a simpler, more systematic design

* So how do you “extract simplicity”?

29

An Example Transition: Programming

* Machine languages: no abstractions
—Had to deal with low-level details
— Mastering complexity was crucial

* Higher-level languages: OS and other abstractions
—File system, virtual memory, abstract data types, ...

* Modern languages: even more abstractions
— ODbject orientation, garbage collection,...

Abstractions key to extracting simplicity

-
“The Power of Abstraction”

Modularity based on abstraction

is the way things get done”

— Barbara Liskov

Abstractions = Interfaces = Modularity

What About Networking Abstractions?

» Consider the data and control planes separately

* Different tasks, so naturally different abstractions

Abstractions for Data Plane: Layers

Applications —

...built on...
email WWW phone...

Reliable (or unreliable) transport \smp HTTP mp...}

...built on... TCP UDP...

Best-effort global packet delivery s

bUIlt on... ethernet PPP...

Best-effort local packet delivery [csmA async sonet...|

. copper fibre radio...
...built on...

Physical transfer of bits

The Importance of Layering

 Decomposed delivery into basic components

* Independent, compatible innovation at each layer
— Clean “separation of concerns”
—Leaving each layer to solve a tractable problem

* Responsible for the success of the Internet!
— Rich ecosystem of independent innovation

Control Plane Abstractions

(Too) Many Control Plane Mechanisms

 Variety of goals, no modularity:

—Routing: distributed routing algorithms
—Isolation: ACLs, VLANSs, Firewalls,...
— Traffic engineering: adjusting weights, MPLS,...

« Control Plane: mechanism without abstraction
— Too many mechanisms, not enough functionality

Finding Control Plane
Abstractions

37

How do you find abstractions?

* You first decompose the problem....
» ...and define abstractions for each subproblem

* So what is the control plane problem?

38

Task: Compute forwarding state:

* Consistent with low-level hardware/software
—Which might depend on particular vendor

« Based on entire network topology
—Because many control decisions depend on topology

* For all routers/switches in network
— Every router/switch needs forwarding state

Our current approach

* Design one-off mechanisms that solve all three

* A sign of how much we love complexity

* No other field would deal with such a problem!

* They would define abstractions for each subtask

e ...and so should we!

Separate Concerns with Abstractions

1. Be compatible with low-level hardware/software

2. Make decisions based on entire network

3. Compute configuration of each physical device

Abs#1: Forwarding Abstraction

« Express intent independent of implementation
—Don’t want to deal with proprietary HW and SW

* OpenFlow is current proposal for forwarding

— Standardized interface to switch
— Configuration in terms of flow entries: <header, action>

 Design details concern exact nature of:

—Header matching
— Allowed actions

Two Important Facets to OpenFlow

« Switches accept external control messages
—Not closed, proprietary boxes

« Standardized flow entry format
— S0 switches are interchangable

43

Abs#2: Network State Abstraction

* Abstract away various distributed mechanisms

* Abstraction: global network view
—Annotated network graph provided through an API

* Implementation: "Network Operating System”
— Runs on servers in network (“controllers”)
— Replicated for reliability

* Information flows both ways

— Information from routers/switches to form “view”
— Configurations to routers/switches to control forwarding

Network Operating System

 Think of it as a centralized link-state algorithm
« Switches send connectivity info to controller

 Controller computes forwarding state
—Some control program that uses the topology as input

» Controller sends forwarding state to switches

» Controller is replicated for resilience
— System is only “logically centralized”

45

N

Eowmﬂﬂdtmlmdﬁmem rs

routing, access control, etc.

Major Change in Paradigm

» Control program: Configuration = Function(view)
» Control mechanism now program using NOS API

* Not a distributed protocol, just a graph algorithm

47

Abs#3: Specification Abstraction

« Control mechanism expresses desired behavior
—Whether it be isolation, access control, or QoS

* It should not be responsible for implementing that

behavior on physical network infrastructure
— Requires configuring the forwarding tables in each switch

* Proposed abstraction: abstract view of network

— Abstract view models only enough detail to specify goals
— Will depend on task semantics

4)
Simple Example: Access Control
Abstract
Network
View
I\ Global
Network
View

J

-
Software Defined Network

Abstract Network View

Virtualization Layer. o o
Global Network View

®
°
Network OS 4 .‘

Clean Separation of Concerns

« Control program: express goals on abstract view
—Driven by Operator Requirements

e VirtualizationLayer: abstract view €=» global view
—Driven by Specification Abstraction for particular task

* NOS: global view €=» physical switches
— API: driven by Network State Abstraction
— Switch interface: driven by Forwarding Abstraction

51

-
SDN: Layers for the Control Plane

Abstract Network View

Network Virtualizatior® 6 o ®
®

Global Network View

®
°
Network OS 4 .‘

Abstractions Don’t Remove Complexity

* NOS, Virtualization are complicated pieces of code

 SDN merely localizes the complexity:
— Simplifies interface for control program (user-specific)
— Pushes complexity into reusable code (SDN platform)

* This is the big payoff of SDN: modularity!
— The core distribution mechanisms can be reused
— Control programs only deal with their specific function

* Note that SDN separates control and data planes
— SDN platform does control plane, switches do data plane

Why Does SDN Scale?

Modification of Control

0-10/s Proeram Strong Consistency
10" - 103/s Per Network Event Eventual Consistency
103 - 10%/s

No Consistency

105 — 10%/s Per Packet No Consistency

What This Really Means

Routing Application

* Look at graph of network
« Compute routes

» Give to SDN platform, which passes on to switches

56

Access Control Application

« Control program decides who can talk to who
» Pass this information to SDN platform

* Appropriate ACL flow entries are added to network
—In the right places (based on the topology)

57

Common Questions about SDN

Common Questions about SDN?

* Is SDN less scalable, secure, resilient,...?
* Is SDN incrementally deployable?

» Can SDN be extended to the WAN?

« Can you troubleshoot an SDN network?

* Is OpenFlow the right fwding abstraction?

Common Questions about SDN?

* Is SDN less scalable, secure, resilient,...?
* Is SDN incrementally deployable?

» Can SDN be extended to the WAN?

« Can you troubleshoot an SDN network?

* Is OpenFlow the right fwding abstraction?

No

Yes

Yes

Yes

No

Questions?

