
	
  

EE122 Fall 2013 HW3 
 
Instructions 
 
Record your answers in a file called hw3.pdf. Make sure to write your name and SID at the 
top of your assignment. For each problem, clearly indicate your final answer, bold and 
underlined. You do not need to explain your answer unless explicitly told to do so. Submit 
your answers via your instructional account using submit hw3. This assignment is due on 
Dec 2nd, 5pm. 
 
Questions? Post on piazza, or email Radhika (radhika at eecs.berkeley) or Sameer (sa at 
berkeley)! 
 

 
Q1. DNS Lookup  
 
Your EECS instructional machine (@fuji.cs.berkeley.edu) has a utility called dig that allows you 
to query Domain Name Service (DNS) servers around the Internet. You can simply run dig as 
follows: 
 

 
 

Here dns.server.name is the hostname of the DNS server you wish to query. The record-type 
is the type of DNS record you wish to retrieve (such as ANY, MX, A, CNAME etc.) and 
domain-name is the name of the host or domain you seek information on. For more 
information on how to use dig, please consult the man page and/or RFC1035. 
 
As we discussed in class, there can be 2 types of DNS queries—recursive or iterative. For a 
recursive DNS query, the name server attempts to completely resolve the name by following 
the naming hierarchy all the way to the authoritative name server. On the other hand, for an 
iterative query, the name server simply gives a referral to another name server in the 
hierarchy that should be contacted next in order to resolve the name. By default, dig sets the 
RD (recursion desired) bit in the DNS query packet to indicate that it would like to have the 
query resolved recursively. Not all servers support recursive queries from arbitrary resolvers. 
 
 

a) Basic Usage: Resolve the IP address of www.google.com using your default name 
server. Attach the output of the dig query and explain each field of the ANSWER 
SECTION in the output 
 
(Actual IP addresses may be different) 
 
 
 

$> dig @dns.server.name[optional] record-type domain-name	
  



	
  

dig query output  
 

; <<>> DiG 9.8.3-P1 <<>> www.google.com 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4254 
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;www.google.com.   IN A 
 
;; ANSWER SECTION: 
www.google.com.  54 IN A 74.125.236.80 
www.google.com.  54 IN A 74.125.236.83 
www.google.com.  54 IN A 74.125.236.82 
www.google.com.  54 IN A 74.125.236.84 
www.google.com.  54 IN A 74.125.236.81 
 
;; Query time: 13 msec 
;; SERVER: 192.168.0.1#53(192.168.0.1) 
;; WHEN: Fri Dec  6 09:01:47 2013 
;; MSG SIZE  rcvd: 112 

 
Google’s IP address: 74.125.236.80  

 
Fields in the answer section:  
 
- First (www.google.com): is the domain name being returned (NAME). 
- Second (54): is the TTL. 
- Third (IN): is the CLASS and stands for Internet. 
- Fourth (A): is the TYPE and stands for a mapping a domain name to an IPv4 address. 
- Fifth (74.125.236.80): is the the IP Address. 

 
b) Iterative DNS Queries: Now, instead of using your default name server, we would 

like you to resolve www.google.com using one of the root DNS servers (e.g., a.root-
servers.net). Note that this server doesn’t accept a recursive query from you, but it 
gives you the reference to the next name server that is to be queried in 
www.google.com’s hierarchy. Use dig to execute the sequence of iterative queries by 
following the chain of referrals to obtain www.google.com’s address1. Attach the dig 
output and write down the sequence of name servers you queried in the process and 
specify the domain each server was responsible for. 

 
 

$> dig @a.root-servers.net www.google.com  (domain: .) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 If a query returns multiple servers, just choose one amongst them at random. If a particular server times out, 
	
  



	
  

$> dig @m.gtld-servers.net www.google.com (domain: .com) 
$> dig @ns2.google.com www.google.com (domain: google.com) 

 
c) Recursive DNS Queries: ns1.iitkgp.ac.in and nsl.fujitsu.fr are two name servers in 

India and France that answer recursive DNS queries. Use these DNS servers to resolve 
www.google.com. Attach the dig output. Now compare the end-to-end latencies 
between your machine and the sets of IPs for google.com that were returned by these 
two DNS servers and by your default DNS server in part (a). Why do we see a 
difference in latency? 

 
$> dig @ns1.iitkgp.ac.in www.google.com (IP1) 
$> dig @nsl.fujitsu.fr www.google.com (IP2) 
 
$> ping IP1 
$> ping IP2 
RTT of India’s IP (IP1) > RTT of France’s IP (IP2) > RTT of IP in part (a) 
 
DNS supports IP anycast. The name servers will always return the IP address of the 
nearest server, which in this case might be located in different parts of the world. 
 

d) DNS Spoofing: As the evil CTO of www.evilsearch.com, Garry realizes that the 
easiest way to defeat Google would be to redirect all the users to his website by simply 
messing with the DNS servers. Having taken EE122, he recalls that servers cache A 
and NS records from DNS replies and referrals and he can configure his own DNS 
server to return incorrect results for arbitrary domains. If the resolver caches Garry’s 
malicious results, it will return bad results to future DNS queries. Help him complete 
his master plan to hijack Google’s domain name by writing down exactly what would 
Garry’s name server returns upon a DNS query. What must a robust DNS server 
implementation do to counter this attack? 

 
When Garry’s name server receives a query for www.evilsearch.com, it returns the 
following malicious results: 
 
 
www.evilsearch.com long-TTL in NS  ns1.google.com 
google.com long-TTL in NS ns1.google.com 
ns1.google.com long-TTL in A  w.x.y.z (Garry’s DNS server) 
 
If a DNS server blindly caches everything, it will redirect all future queries for 
www.google.com to Garry’s nameserver (w.x.y.z). 

 
A robust DNS server implementation should be less trustful of results returned by 
other DNS servers and only cache information that’s directly relevant to the queried 
domain. In the above example, since google.com is not a subdomain of evilsearch.com, 
a correct DNS server implementation should ignore all information related to 
google.com in the results. 



	
  

Another option is to use something like DNSSec, which allows the query response to 
be authenticated. 

 
 
Q2. Content Delivery with HTTP  
 
We would like to download an article on the web. This involves two steps: 

Step 1: Download a master index page of size B. This page contains links to four images.  
Step 2: Download the four images. Each image is also of size B 

 
Assumptions:  

• Ignore all transmission delays 
• Assume that HTTP responses fit in a single TCP packet. i.e., the HTTP response 

including the B bytes and the size of the HTTP header is smaller than the MSS of a 
single TCP packet 

• We don’t need to wait for the HTTP responses to be acknowledged nor for the TCP 
connections to terminate 

 
Calculate the time taken to download the article under each of the following scenarios 
 

a) All files are stored at a single origin server S. Our RTT to S is ‘R’. We use sequential 
requests with non-persistent TCP connections. Give your answer in terms of multiples 
of ‘R’.  
(2R + 4(2R)) = 10R 
 

b) All files are stored at a single origin server S. Our RTT to S is ‘R’. We use sequential 
requests with persistent TCP connections. Give your answer in terms of multiples of R.  
(2R + 4R) = 6R 

     
 

c) All files are stored at a single origin server S. Our RTT to S is ‘R’. We use concurrent 
requests with non-persistent TCP connections. (Note that the master index page is 
downloaded first, followed by concurrent download of the images). Give your answer 
in terms of multiples of R.  
(2R + 2R) = 4R 
 

d) The content provider now signs up with a CDN for the delivery of its images. The 
master index page is still served from the origin server S with RTT equal to ‘R’.  Our 
RTT to the closest CDN server is (R/2). We use sequential requests with non-
persistent TCP connections. Give your answer in terms of multiples of R.  
(2R + 4(2R/2)) = 6R 
 

e) Repeat part (d) assuming sequential persistent connections  
(2R + R/2 + 4R/2) = 4.5R 



	
  

 
f) Repeat part (d) assuming concurrent non-persistent connections  

(2R + 2R/2) = 3R 
 
 

 
g) The CDN tries to do some load balancing and different images are served by different 

CDN servers, at distances 3R/4, R/2, R/3 and R/4. The master index page is still 
served from the origin server S. We use sequential requests with non-persistent TCP 
connections. Give your answer in terms of multiples of R.  
2R + 2(3R/4) + 2(R/2) + 2(R/3) + 2(R/4) = 17R/3 = 5.66R 
 

h) Repeat part (g) assuming sequential persistent connections 
2R + 2(3R/4) + 2(R/2) + 2(R/3) + 2(R/4) = 17R/3 = 5.66R 

 
i) Repeat part (g) assuming concurrent non-persistent connections  

2R + 2(3R/4) = 3.5R 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

Q3. Wireless  
 

 
 
 
Consider the above wireless network in which each node has a radio range of distance d. In 
the figure, two nodes are in each-other’s range, if there is an edge between them. Consider 
two collision resolution schemes:  

• CS: This is a pure carrier sense scheme in which a node does not send when it hears 
someone else transmitting, but otherwise can send whenever it wants.  

• MACA: No carrier sense. Nodes wishing to communicate use an RTS-CTS-Data 
exchange. Nodes overhearing an RTS wait to allow the CTS to be sent. If no CTS is 
heard, the node can transmit. If a CTS is heard (even if no earlier RTS is heard), the 
node is quiet for the entire duration of the data transmission.  
 

Note: Treat each of the five parts of this question as independent scenarios 
 
 

a) Assume node E is transmitting data to node B when a node, say X decides to transmit 
data to another node, say Y.  You have the following three cases: 
 
Case 1: X = A, Y = B 
Case 2: X = F, Y = C 
Case 3: X = C, Y = A 
 
For each case, answer the following questions: 
 

i. If all nodes use CS, can X transmit to Y?  
If NO: explain why.  
If YES: Is the transmission successful (i.e., will Y correctly receive the data from 
X)? Is the original transmission (from E to B) impacted? 
 

A 

B C 
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E F	
   

d 

d d 

d d d 



	
  

 
ii. If all nodes use MACA, can X transmit to Y?  

If NO: explain why.  
If YES: is the transmission successful (i.e., will node Y receive the data)? Is the 
original transmission (from E to B) impacted? 
 

Case1:  (i) Yes, Not successful, E to B impacted 
             (ii) No, as A will hear B’s CTS and won’t send an RTS. 
Case2: (i) Yes, Successful, E to B not impacted 
            (ii) No, as C will hear B’s CTS and won’t send back a CTS. 
Case3: (i) Yes, Successful, E to B impacted 
            (ii) No, as C will hear B’s CTS and won’t send an RTS. 
 
   

 
b) Now assume node B is transmitting data to node E when a node, say X decides to 

transmit data to another node, say Y.  You have the same three cases: 
 

Case 1: X = A, Y = B 
Case 2: X = F, Y = C 
Case 3: X = C, Y = A 
 
For each case, answer the following questions: 
 

i. If  all nodes use CS, can X transmit to Y?  
If NO: explain why.  
If YES: Is the transmission successful (i.e., will Y correctly receive the data from 
X)? Is the original transmission (from B to E) impacted? 

 
ii. If  all nodes use MACA, can X transmit to Y?  

If NO: explain why.  
If YES: is the transmission successful (i.e., will node B receive the data)? Is the 
original transmission (from B to E) impacted? 

Case1:  (i) No, A will hear B 
             (ii) No, A sends an RTS but B doesn’t respond  
Case2: (i) Yes, Not successful, B to E not impacted 
            (ii) No, C can’t hear F’s RTS 
Case3: (i) No, as C will hear B 
            (ii) No, A can’t hear C’s RTS 

 
 

 
c)  Assume A is transmitting to B at the beginning of time. List the pair of nodes (if any) 

that can successfully communicate: 
i. if all nodes use CS 

ii. if all nodes use MACA 
For this, consider each direction separately. i.e., list the pair (X, Y) if X can successfully 



	
  

send data to Y, irrespective of whether Y can successfully send to X. We say that the 
data is sent successfully if the sender is able to transmit it and the receiver is able to 
successfully receive it, without any interference. 
(i) No other pair can have successful communication with CS 
(ii) No other pair can have successful communication with MACA 

 
d) Node D would like to transmit to A, node E to B and node F to C. Can nodes D, E and 

F transmit simultaneously using CS? What about with MACA (clearly list your 
assumptions with respect to the ordering and timing of RTS/CTS)?   
They can do so using CS. 
They can do so using MACA only if D, E and F send RTS at the same time and A, B 
and C then send CTS at the same time. If there is any time difference, it won’t be 
possible. 

 
e) Now assume bidirectional communication between node pairs (D, A), (E, B) and (F, C), 

i.e., for a node pair (x,y), x has data to send y and y has data to send to x.   In an ideal 
scenario, which pairs of nodes can simultaneously communicate? Will CS allow this 
ideal scenario? What about MACA (clearly list your assumptions with respect to the 
ordering and timing of RTS/CTS)?  
 
In the ideal scenario, bidirectional/back-and-forth exchanges can happen in two 
"phases" that repeat: 
In the first phase, the outside nodes can send i.e. (D->A), (E->B), (F->C) can 
communicate simultaneously. 
In the second phase, the inner nodes can send i.e (A->D), (B->E), (C->F) can 
communicate simultaneously. 
 
Using CS: 
(D->A), (E->B), (F->C) can communicate simultaneously. But the bidirectional 
communication cannot happen. 
Using MACA: 
(D->A), (E->B), (F->C) can communicate simultaneously only if the three RTSes are 
sent at the same time and the three CTSes are sent at the same time. 
 (A->D), (B->E), (C->F) can communicate simultaneously only if the three RTSes are 
sent at the same time and the three CTSes are sent at the same time. 

 
 
 
 
 
 
 
 



	
  

 
Q4. Spanning Tree Protocol and Learning Switches  

  

 
 
Consider the above topology, with each node representing an Ethernet switch. For simplicity 
assume that the MAC address of a switch is represented by a single number as shown. 
 
a) Spanning Tree Protocol 

 
i. List the root and the edges of the spanning tree obtained after running the Spanning 

Tree Protocol for Switched Ethernet on the above network. (You don’t have to show 
how the algorithm proceeds, simply write the final result.). Ties are broken based on 
smaller id if multiple shortest paths to the root exist.  
Root: 0 
Edges: 0-1, 0-2, 1-4, 2-3, 3-5 
 

ii. Suppose node 0 fails. Identify the new root and the edges of the new Spanning Tree 
that is constructed after the failure. 
Root: 1 
Edges: 1-2, 1-4, 2-3, 4-5 

 
 
b) Learning Switches 

Consider the original topology (before node 0 fails) with end-hosts attached to them as 
shown below. Again, for simplicity, assume the MAC addresses of the end-hosts are 
represented by a single alphabet.   
The circular nodes in the topology are “Learning Switches”.  
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Consider the following packet transmissions occurring between a source-destination 
pair, in the given order, one after another. For each packet transmission, list the 
switches and the end-hosts that receive the packet. 
Assume that you start with no entries in the forwarding table of any switch. 
Note: If a switch floods the packet, all the adjacent switches and end-host will receive it and 
may further flood or unicast it. If a switch unicasts a packet, then only the corresponding end 
host or switch would receive the packet, which may further flood or unicast the packet.  
 
 
1. b to c 
2. c to b 
3. d to c 
4. a to b 
5. a to g 
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1. (b), 1, g, 4, e, 0, a, 2, c, 3, d, 5, f 
2. (c), 2, 0, 1, b 
3. (d), 3, 5, f, 2, c 
4. (a), 0, 1, b 
5. (a), 0, 1, b, g, 4, e, 2, c, 3, d, 5, f 

 
 

c) Learning Switches with Limited Memory 
Consider the case that the switches have a small memory cache with enough space to 
store only a single entry in the forwarding table and therefore, they store only the 
most recent entry.   
Assume that you start with no entries in the forwarding table of any switch. 
 
For each of the packet transmissions, in the given order, write down whether switch 0 
floods the packet or unicasts it. 
 
1. b to c  flood 
2. a to b  unicast 
3. c to b  flood 
4. b to c  unicast 
5. a to b  unicast 
6. c to b  flood 
7. b to c  unicast 
8. a to b  unicast 
9. c to b  flood 
10. b to c  unicast 
11. a to b  unicast 
12. c to b  flood 

 
 

i. List for each pair amongst (a to b), (b to c) and (c to b), the fraction of packets that 
are flooded by the switch and the fraction of packets that are unicast out of the 4 
packets transmitted for each pair.   
(a to b): 4/4 unicast; 0/4 flood 
(b to c): ¾ unicast; ¼ flood 
(c to b): 0/4 unicast; 4/4 flood 
 

ii. How can you re-order these packet transmissions, such that for all three source-
destination pairs, half of the packets are flooded and half are unicast? (Hint: you 
need to make at most 2 swaps in the sequence of packet transmissions). 

 
1. b to c  
2. a to b  
3. c to b   
4. b to c   
5. c to b   



	
  

6. a to b   
7. b to c   
8. a to b   
9. c to b   
10. b to c   
11. c to b  
12. a to b   

 
                 or 
 

1. b to c  
2. c to b   
3. a to b  
4. b to c   
5. a to b   
6. c to b   
7. b to c   
8. a to b   
9. c to b   
10. b to c   
11. c to b   
12. a to b  

 
                 or 
 

1. b to c  
2. a to b   
3. c to b  
4. b to c   
5. a to b   
6. c to b   
7. b to c   
8. c to b   
9. a to b   
10. b to c   
11. c to b   
12. a to b  

 
 

 
 
 


