
EE 122: Error detection and reliable
transmission

Ion Stoica
September 16, 2002

istoica@cs.berkeley.edu 2

High Level View

� Goal: transmit correct information

� Problem: bits can get corrupted
- Electrical interference, thermal noise

� Solution
- Detect errors

- Recover from errors

• Correct errors

• Retransmission

istoica@cs.berkeley.edu 3

Overview

� Error detection

� Reliable transmission

istoica@cs.berkeley.edu 4

Error Detection

� Problem: detect bit errors in packets (frames)

� Solution: add redundancy bits to each packet

� Goals:
- Reduce overhead, i.e., reduce the number of redundancy bits

- Increase the number and the type of bit error patterns that can
be detected

� Examples:
- Two-dimensional parity

- Checksum

- Cyclic Redundancy Check (CRC)

istoica@cs.berkeley.edu 5

Two-dimensional Parity

� Add one extra bit to a 7-bit code such that the number of 1’s in
the resulting 8 bits is even (for even parity, and odd for odd
parity)

� Add a parity byte for the packet

� Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

1000110 1

istoica@cs.berkeley.edu 6

How Many Errors Can you Detect?

� All 1-bit errors

� Example:

0110100

1011010

0000110

1110101

1001011

1

0

1

1

0

1000110 1

error bit
odd number of 1’s

istoica@cs.berkeley.edu 7

How Many Errors Can you Detect?

� All 2-bit errors

� Example:

0110100

1011010

0000111

1110101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on column

istoica@cs.berkeley.edu 8

How Many Errors Can you Detect?

� All 3-bit errors

� Example:

0110100

1011010

0000111

1100101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on column

istoica@cs.berkeley.edu 9

How Many Errors Can you Detect?

� Most 4-bit errors

� Example of 4-bit error that is not detected:

0110100

1011010

0000111

1100100

1001011

1

0

1

1

0

1000110 1

error bits

How many errors can you correct?

istoica@cs.berkeley.edu 10

Checksum

� Sender: add all words of a packet and append
the result (checksum) to the packet

� Receiver: add all words of a packet and compare
the result with the checksum

� Can detect all 1-bit errors

� Example: Internet checksum
- Use 1’s complement addition

istoica@cs.berkeley.edu 11

1’s Complement Revisited

� Negative number –x is x with all bits inverted

� When two numbers are added, the carry-on is
added to the result

� Example: -15 + 16; assume 8-bit representation

15 = 00001111

�

-15 = 11110000

16 = 00010000

+

000000001
+

1

00000001

-15+16 = 1

istoica@cs.berkeley.edu 12

Cyclic Redundancy Check (CRC)

Represent a (n+1)-bit message by an n-degree polynomial M(x)
- E.g., 10101101

�

M(x) = x7 + x5 + x3 + x2 + x0

Choose a divisor k-degree polynomial C(x)
Compute reminder R(x) of M(x)*xk / C(x), and then compute T(x) =
M(x)*xk - R(x)

- T(x) is divisible by C(x)
- First n coefficients of T(x) represent M(x)

Sender:
- Compute and send T(x), i.e., the coefficients of T(x)

Receiver:
- Let T’(x) be the (n+k)-degree polynomial generated from the received

message
- If C(x) divides T’(x)

�

no errors; otherwise errors

istoica@cs.berkeley.edu 13

Some Polynomial Arithmetic
Modulo 2 Properties

� If C(x) divides B(x), then degree(B(x)) >=
degree(C(x))

� Subtracting C(x) from B(x) reduces to perform an
XOR on each pair of matching coefficients of C(x)
and B(x)

- E.g.:

B(x) = x7 + x5 + x3 + x2 + x0 �

10101101

C(x) = x3 + x1 + x0 �

00001011

B(x) - C(x) = x7 + x5 + x2 + x1 �

10100110

istoica@cs.berkeley.edu 14

Computing T(x)

� Compute the reminder R(x) of M(x)*xk / C(x)

� T(x) = M(x)*xk - R(x)

� Example: send packet 110111, assume C(x) = 101
- k = 2, M(x)*xK

�

11011100
- Compute R(x)

- T(x) = M(x)*xk - R(x)

�

11011100 xor 1 = 11011101

101) 11011100
101

111
101

101
101

100
101

1 R(x)

istoica@cs.berkeley.edu 15

CRC Properties

� Detect all single-bit errors if coefficients of xk and
x0 of C(x) are one

� Detect all double-bit errors, if C(x) has a factor
with at least three terms

� Detect all number of odd errors, if C(x) contains
factor (x+1)

� Detect all burst of errors smaller than k bits

istoica@cs.berkeley.edu 16

Overview

� Error detection

� Reliable transmission

istoica@cs.berkeley.edu 17

Reliable Transmission

� Problem: obtain correct information once errors
are detected

� Solutions:
- Use error correction codes (can you give an example of

error detection code that can also correct errors?)

- Use retransmission (we’ll do this in details)

� Algorithmic challenges:
- Achieve high link utilization, and low overhead

istoica@cs.berkeley.edu 18

Latency, Bandwidth, Round-Trip
Time

� Latency = propagation + transmit + queue
- Propagation: time it takes the signal to propagate along

the link

- Transmit: time it takes to transmit the packet =
(packet_size)/(link_bandwidth)

- Queue: time for which the packet waits into the adapter
at the sender before being transmitted

� Note: next we’ll assume short packets, i.e,
transmit term can be neglected !

� Round-Trip Time (RTT) = time it takes to a
packet to travel from sender to destination and
back

- RTT = one-way latency from sender to receiver + one-
way latency from receiver to sender

istoica@cs.berkeley.edu 19

Automatic Repeat Request (ARQ)
Algorithms

� Use two basic techniques:
- Acknowledgements (ACKs)

- Timeouts

� Two examples:
- Stop-and-go

- Sliding window

istoica@cs.berkeley.edu 20

Stop-and-Go

� Receiver: send an acknowledge (ACK) back to
the sender upon receiving a packet (frame)

� Sender: excepting first packet, send a packet
only upon receiving the ACK for the previous
packet

T
im

e

Sender Receiver
frame

frame

ACK

ACK

istoica@cs.berkeley.edu 21

What Can Go Wrong?
Sender Receiver

frame

frame

ACK

Frame lost

�

resent it
on Timeout

Sender Receiver
frame

frame

ACK

ACK

T
im

eo
ut

ACK lost

�

resent packet

Need a mechanisms to
detect duplicate packet

Sender Receiver
frame

frame

ACK

ACKT
im

eo
ut

ACK delayed

�

resent packet

Need a bit to differentiate
between ACK for current
and previous packet

istoica@cs.berkeley.edu 22

Stop-and-Go Disadvantage

� May lead to inefficient link utilization

� Example: assume
- One-way propagation = 15 ms

- Bandwidth = 100 Mbps

- Packet size = 1000 bytes

�

transmit = (8*1000)/108 = 0.08ms

- Neglect queue delay

�

Latency = approx. 15 ms; RTT = 30 ms

Propagation = 15 ms

Bandwidth = 100 Mbps

istoica@cs.berkeley.edu 23

Stop-and-Go Disadvantage (cont’d)

� Send a message every 30 ms � Throughput =
(8*1000)/0.03 = 0.2666 Mbps

� Thus, the protocol uses less than 0.3% of the link
capacity!

Sender Receiver
frame

frame

ACK

ACK

30
 m

s
30

 m
s

istoica@cs.berkeley.edu 24

Solution

� Don’t wait for the ACK of the previous packet
before sending the next one!

istoica@cs.berkeley.edu 25

Sliding Window Protocol: Sender

� Each packet has a sequence number
- Assume infinite sequence numbers for simplicity

� Sender maintains a window of sequence
numbers

- SWS (sender window size) – maximum number of
packets that can be sent without receiving an ACK

- LAR (last ACK received)

- LFS (last frame sent)

seq. numbersLAR LFS

Acknowledged packets Packets not acknowledged yet

istoica@cs.berkeley.edu 26

Example

� Assume SWS = 3 Sender Receiver

frame 1
1

frame 2
frame 3

2 31

ACK 1
2 31

frame 4
2 3 41 ACK 2

frame 5
2 3 4 51

Note: usually ACK contains the sequence number of the first packet in
sequence expected by receiver

istoica@cs.berkeley.edu 27

Sliding Window Protocol: Receiver

� Receiver maintains a window of sequence
numbers

- RWS (receiver window size) – maximum number of out-
of-sequence packets that can received

- LFR (last frame received) – last frame received in
sequence

- LAF (last acceptable frame)

- LAF – LFR <= RWS

istoica@cs.berkeley.edu 28

Sliding Window Protocol: Receiver

� Let seqNum be the sequence number of arriving
packet

� If (seqNum <= LFR) or (seqNum >= LAF)
- Discard packet

� Else
- Accept packet

- ACK largest sequence number seqNumToAck, such
that all packets with sequence numbers <=
seqNumToAck were received

seq. numbersLFR LAF

Packets in sequence Packets out-of-sequence

istoica@cs.berkeley.edu 29

Properties of ARQ Protocols

� Reliability

� Increase link utilization (only for sliding window
protocols)

� Flow control: a sender cannot send at a rate
greater than the rate at which the receiver can
consume the packets

� Packet order
- In the case the Sliding Window Protocol the size of

receiver window (RWS)

�

specifies how many out-of-
order packets can be stored at the receiver

istoica@cs.berkeley.edu 30

Summary

� There are two steps required to transmit frames
(packets) reliable

- Detect when packets experience errors or are lost (we’ll
talk more about packet loss in the context of TCP)

• Two-dimensional parity

• Checksum

• Cyclic Redundancy Check (CRC)

- Use packet retransmission to recover from errors

• Stop-and-go

• Sliding window protocol

