EE120 Discussion 8, GSI: Ming

Problem 1

For each of the following statements, if you believe it is true, give a justification. If you believe it is false, give a counterexample.

- (a) A linear causal continuous-time system is always time-invariant.
- (b) The system with (real-valued) input x(t) and output given by

$$y(t) = (1+(x(t))^2)^(\cos(t))$$

is stable.

- (c) The discrete-time signal x[n] = cos(n) is a periodic signal.
- (d) For an otherwise completely unknown system, it is known that when the input is given by

$$x(t) = \cos(t) + \cos(2t),$$

the output is

$$y(t) = .5(1+\cos(t)+\cos(2t)+\cos(3t)).$$

This system cannot be a linear time-invariant (LTI) system.

Problem 2 (Fourier Series)

$$x(t) = \sin^2(t) \longrightarrow h_1(t) = e^{-t} u(t) \longrightarrow y(t)$$

- a. Find the Fourier series expansion of x(t).
- b. Find the Fourier series expansion of y(t).
- c. Sketch the 2-sided amplitude and phase spectrum of x(t) and y(t). Label salient features.

Problem 3 (Filtering)

The signal x(t) with spectrum $X(j\omega)$ as shown in Figure 2 is passed through a linear time-invariant (LTI) system with impulse response

$$h(t) = 2\operatorname{sinc}(2t),$$

where, as defined in class,

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}.$$

Denote the output of the system by y(t). Calculate the error between x(t) and y(t), given by

$$\int_{-\infty}^{\infty} |x(t) - y(t)|^2 dt.$$

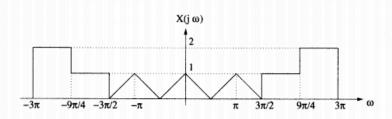


Figure. The spectrum of the signal x(t).