EE 120
GSI: Ming
OH: Tu 2-3 pm, Cory 406
jming@berkeley.edu
HW due Friday (9/2)

- Ice-breaking
- DFT basics
- Phasor analysis
 - time domain
 - freq domain

\[X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi nk}{N}} \]

Why DFT?
- Signal processing: low-pass filter
- Communication: AM
- Image compression

(a) \[x[n] = \cos \left(\frac{2\pi k}{N} n \right) \]

\[x[n] = \frac{1}{2} e^{-j \frac{2\pi k}{N} n} + \frac{1}{2} e^{j \frac{2\pi k}{N} n} \]

\[X[k] = \frac{1}{2} \sum_{n=0}^{N-1} X[k] e^{-j \frac{2\pi nk}{N}} + \frac{1}{2} \sum_{n=0}^{N-1} X[k] e^{j \frac{2\pi nk}{N}} \]

\[X[k] = \delta_{k,0} + \delta_{k,N} \]

(b) Signal superposition

\[\frac{1}{N} \sum_{n=0}^{N-1} (x[n] + \beta y[n]) e^{-j \frac{2\pi nk}{N}} \]

\[= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} \beta y[n] e^{-j \frac{2\pi nk}{N}} \]

\[= \alpha X[k] + \beta Y[k] \]

Note: \(X[0] \) periodic

(c) \[\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \]

\[= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \]

\[= X[k] e^{-j \frac{2\pi Mk}{N}} \]

(d) \[\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{j \frac{2\pi nk}{N}} \]

\[= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{j \frac{2\pi nk}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{j \frac{2\pi nk}{N}} \]

\[= X[k] e^{j \frac{2\pi Mk}{N}} \]

(e) \[\frac{1}{N} \sum_{n=0}^{N-1} x[n] y[n] \]

\[= \frac{1}{N} \sum_{n=0}^{N-1} X[k] Y[k] \]

\[= \sum_{k=0}^{N-1} X[k] Y[k] \delta_{k,0} + \sum_{k=0}^{N-1} X[k] Y[k] \delta_{k,k_2} \]

\[\delta_{k,0} \text{ if } k \neq k_2 \]

\[\alpha X[k] Y[k_2] \text{ if } k = k_2 \]
2. Phasor analysis

Time domain

\[V(t) = i(t)R \]
\[i(t) = C \frac{dV_c(t)}{dt} \]
\[V_c(t) = L \frac{di(t)}{dt} \]

Derivation of phasor:

\[V_c(t) = \text{Re} \{ V_c e^{j\omega t} \} \]
\[= V_c \cos \omega t \]
\[i_c(t) = -C V_c \omega \sin \omega t \]
\[= \text{Re} \{ jC V_c e^{j\omega t} \} \]
\[Z_c = \frac{V_c}{I_c} = \frac{V_c}{jC V_c \omega} = \frac{1}{jC \omega} \]

Impedance (phasor domain)

\[V_c = I_c = \frac{1}{jC \omega} \]

\[V_+ = V_- = 0 \]

\[V_{out+} = -\frac{V_{in}}{R} \]

\[H(w) = \frac{V_{out}}{V_{in}} = -\frac{1}{jwCR} \]

\[\log |H(w)| = \log \left(\frac{10^4}{\omega} \right) = 4 - \log \omega \]

\[20\log |H(w)| \approx -20 \text{dB/dec} \]