Discussion 12: Minimum-Phase/All-Pass Decomposition and Steady-State Error

1. Minimum-Phase/All-Pass Decomposition

In many applications, we want to cancel the effect of a system on the system input, so we would like to apply a filter that is the exact inverse of the system in order to “undo” the distortion. However, systems with zeros outside the unit circle (in Z-transform) will result in inverted transfer functions that are not causal. By using the Min-phase/all-pass decomposition, we can find a filter that at least “undoes” the magnitude of the distortion, but leaves some phase distortion.

Exercise:

a) Consider the transfer function, \(H_1(z) = \frac{1+3z^{-1}}{1+2z^{-1}} \), which might represent the distortion on a transmission line. Draw the pole-zero diagram for \(H_1(z) \).

b) What is the “inverse” filter, or, in other words, what function \(H_{inv}(z) \) exactly gives \(H_{inv}(z)H_1(z) = 1 \)? Why can’t we use this function, \(H_{inv}(z) \), in a practical application?

c) Find some \(H_{AP}(z) \) (all-pass filter) and \(H_{MP}(z) \) (“min-phase” filter) such that \(H_1(z) = H_{AP}(z)H_{MP}(z) \).

d) Using this “all-pass” decomposition, construct a new inverse filter such that \(|H_{inv}(z)H_1(z)| = 1 \).

Extra Practice: consider the transfer function, \(H_2(z) = \frac{(1+3z^{-1})(1+3e^{-j\pi/4}z^{-1})}{(1-\frac{1}{2}z^{-1})} \). Find the all-pass/min-phase decomposition for \(H_2(z) \).
2. Steady-State Error

Please refer to the “Steady State Error” Handout for some notes.

The “Type” of loop refers to the number of poles at $s = 0$ for the open loop gain, DG. Type 0 loops have constant steady state error for step response. Type 1 loops have zero steady state error for step response.

Exercise:

Consider the system below, where the input voltage $x(t)$ controls the angular velocity, $\omega(t)$, of the motor with moment of inertia J. The angular velocity is related to current by the diff. eq.: $J \frac{d\omega}{dt} = ki(t)$

a) Find $H_P(s)$, the transfer function from input voltage to output angular velocity.

b) Find the steady state error of the system under proportional control with gain K, and approximately sketch the steady state error vs. K.

c) What is the steady state error if we use integral control ($\frac{K}{s}$)?