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Notes 25 largely plagiarized by %khc

This material is optional. It will be a preview for those of you who wish to take ee123.
This is all massively plagiarized from Prof. Fearing’s DFT handout from fall 1994.

1 Motivation

Given a discrete-time signal x[n], we know that its Fourier transform can be obtained by taking its DTFT, or equivalently
by taking its Z transform and evaluating that transform on the unit circle to obtain the DTFT. Unfortunately, the DTFT
is continous-valued, and since there are an infinite number of points in one period of the DTFT, we cannot represent
every point in that period using a computer.

The next best thing we can do is to sample the DTFT at specific points. However, sampling something in one
domain forces its equivalent in the other domain to be discrete. The discrete Fourier transform (DFT) is the result.

To summarize, there are a number of reasons why we would wish to study the DFT:

� it gives us a way of finding the DTFT using a computer; this allows us to perform the spectral analysis of signals.

� there exists a computationally-inexpensive algorithm called the fast Fourier transform (FFT) that can compute
the DFT; the FFT is O(n lnn), compared to the straightwardO(n2) way of evaluating the DFT.

� having the FFT allows us to perform long convolutions relatively inexpensively; it turns out that if y[n] =
h[n] � x[n], the DFT of y[n] is equal to the product of the DFTs of h[n] and x[n], subject to certain conditions.

� being able to perform convolutions quickly allows us to determine the output of digital filters with long inputs
and long impulse responses in O(n lnn) time, instead of O(n2) using the standard convolution sum.

2 Discrete Time Transform (DFT)

To derive the DFT, consider the setup in Figure 1. Starting from x(t) that is nonzero only over the interval from t = 0

Σδ (t−nT  )s

0
Σδ (t−nT  )x(t)

~
x(t)

x’(t)

Figure 1: Interpreting the DFT.

to t < T0, we sample x(t) using a spacing between samples of Ts = T0
N

. We accomplish this by multiplying x(t) by
an impulse train

P
1

n=�1 �(t� nTs), giving x̃(t):

x̃(t) = x(t)
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n=�1

�(t� nTs)

=
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=
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Note that the limits of summation are reduced because x(t) is of finite duration.
Then we pass x̃(t) through a system with impulse response

P
1

n=�1 �(t� nT0), giving x0(t); with T0 chosen as
an integer multiple of Ts [eg T0 = NTs], this makes x0(t) periodic with period T0:

x0(t) = x̃(t) �
1X

n=�1

�(t � nT0)

=
1X

n=�1

x̃(t� nT0)

What happens in the frequency domain? Once again, consider the setup in Figure 1. We start with X(f), and
convolve it with the Fourier transform of

P
1

n=�1 �(t� nTs), which is 1
Ts

P
1

k=�1 �(f � k
Ts

); this gives X̃(f):

X̃(f) = X(f) �
1
Ts

1X
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�(f �
k
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)

=
1
Ts
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k
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This is apparently a dead end, but from discussion in previous lectures, we recognize this as the DTFT:

X̃(f) = X(ej2�fTs)

=
1X

n=�1

x[n]e�j2�fnTs

=
N�1X

n=0

x[n]e�j2�fnTs

Note that the limits of summation are reduced because x(t) is of finite duration.
Now, since we convolved in the time domain to get x0(t), we end up multiplying X̃(f) by the Fourier transform ofP
1

n=�1 �(t� nT0), which is 1
T0

P
1

k=�1 �(f � k
T0
). This effectively samples the DTFT in the frequency domain.

X0(f) = X̃(f)
1
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Let’s substitute the expression that we derived previously for X̃(f):

X0(f) =
1
T0
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)
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Since T0 = NTs, we can substitute that in also:

X0(f) =
1
T0
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T0
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Before going on, one should verify that:

� x̃(t) is the continous-time representation of the discrete-time signal x[n], with sampling period Ts.

� the corresponding X̃(f) is just another name for X(ej2�fTs ), the DTFT of x[n].

� X̃(f) is periodic with period 1
Ts

[evaluate X̃(f + 1
Ts

)].

� x0(t) is periodic with period T0.

� x0(t) is discrete in time, with Ts between samples.

� X0(f) is periodic with period 1
Ts

[really not obvious; this arises out of the periodicity of X̃(f)].

� X0(f) is discrete in frequency, with 1
T0

between samples.

If any one of these points is unclear, you are strongly encouraged to go back, reread lecture notes, and consult other
references until they are clear.

Anyway, this is kind of cumbersome, so let’s just lose the impulses in X 0(f). Define X[k] equal to T0 times the
area of the impulse at f = k

T0
:

X[k] = T0X
0(f)jf= k

T0

This then lets us define the discrete Fourier transform (DFT) as the quantity inside the square brackets in the last
equation for X 0(f):

X[k] =
N�1X

n=0

x[n]e�
j2�nk
N

Since everybody gets a little tired of writing that last complex exponential out, define WN = e�
j2�
N .

Note that the k which indexes X[k] is sometimes called the frequency index, and that its value ranges from 0 to
N � 1.

3 Summary

The bottom line is this:

� DFT:

X[k] =
N�1X

n=0

x[n]Wnk
N

with k = 0; 1; : : : ; N � 1.

� inverse DFT:

x[n] =
1
N

N�1X

k=0

X[k]W�nk
N

with n = 0; 1; : : : ; N � 1.

� x[n] is clearly discrete.

� x[n] is periodic with period N .

� X[k] is clearly discrete.

� X[k] is periodic with period N .

� The X[k] are samples of X(ej2�fTs), the DTFT of x[n];X(ej2�fTs ) is sampled uniformly with spacing 1
T0

.

� k = 0 corresponds to f = 0, k = 1 corresponds to f = 1
T0

, and so on, up to k = N � 1 corresponding to

f = N�1
T0

.


