N OteS 17 largely plagiarized by %khc

1 Laplace Transforms

The Fourier transform allowed us to determine the frequency content of a signal, and the Fourier transform of an
impul se response gave us the frequency response of a system. Likewise, the Laplace transform can be thought of as
permitting us to determine the “complex exponentia content” [the frequency content, appropriately weighted] of a
signal, and the Laplace transform of the impulse response gives us the transfer function of a system.

We begin with the Fourier transform (FT), defined as:

X(jw) = / x(t)e Iwtdt
Note the notation change: X (w) will now be written as X (jw) to emphasize the relationship between the LT and the
FT.
But let’s not restrict ourselves to the jw axis. Instead, let’s consider the entire complex plane. We then have the
bilateral Laplace transform (BLT):

oQ

X(s):/_ z(t)e ' dt

oQ

where s = o + jw.
There is an aternate form of the Laplace transform, known as the unilateral Laplace transform (ULT):

X(s) = / z(t)e tdt
Note that it is quite ssimilar to the BLT, except for the lower limit of integration.

Unlikethe FT, both the ULT and the BLT have regions of convergence (ROCs) over which thetransform exists. A
ROC isthe range of values over which the integral converges.

The ULT isonly useful for causal signals, acausa signal being defined as one that is nonzero for only nonnegative
valuesof t;* to see this, just ook at the limitsof integration. The BLT permitsusto consider any signal. For real-world
systems, the ULT is sufficient for our needs, since all real-world systems are causal and input signals can be thought
of as beginning from some arbitrary initial time, which might aswell bet = 0.

2 ULT Properties

Thisisgoing to look very, very familiar (at least to those who are reading carefully). Compare to the FT properties.

Linearity: az(t) + By(t) & aX(s) + fY (s), ROC: at least the intersection of the ROC of x(¢) and the ROC of
y(t)
The Laplace transformis alinear operator (asisthe Fourier transform), following from properties of integration.

Convolution: z(t) * y(t) 4 X(s)Y (s), ROC: at least the intersection of the ROC of «(t) and the ROC of y(¢)
Convolutionintime domain isequival ent to multiplicationin thefrequency domain. For causal signal's, the convolution
x(t) * y(t) can bewrittenas [, «(t — 7)y(r)dr. Teking the LT of this gives:

Llz(t) xy(t)] = /00[/00 z(t — 7)y(r)dr]e " dt

/Oo y(T)[/OO z(t — T)e~"tdt)dr

INote that before we said that linearity, time-invariance, causality, memorylessness, and BIBO stability applied only to systems. Now we're
going to stretch the definition of causality, and apply that to signals. But that's the only definition we're going to do that to.
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|| ety annas

/io y(T)e_”[/io z(t')e™*" dt')dr

- X(s)/oo y(r)e=*Tdr

= X(s)Y(s)

Notethe change of variablest’ = ¢ — r and thefact that since 7 is positive, the quantity in the parentheses in the fourth
linereducesto X (s).

Deay =z(t—T) < X(s)e™*T forT > 0, ROC: same as that of z(t)
The delay property can also be directly derived:

Lle(t — T)]

/ z(t — T)e *'dt
/oo l‘(t/)e_s(tl-I—T)dt/

=T
o0 7
— e—sT/ l‘(t/)e_St dt/
=T

= e_STX(s)

using the change of variablest’ = ¢ — T'. Notethat for negative 7', the integral on the third line cannot be indentified
as X (s), since the lower limit will not include the portion of time between 0~ and 7.

Differentiation z(t) <> sX(s) — «(07), ROC: at least that of z()
This property can be derived using integration by parts:

Llz(t)] = /iod:(t)e_”dt

= z(t)e P2 —1—5/ z(t)e ' dt

= limz(t)e™*" — 2(07) + sX(s)

t—=00

sX(s) —x(07)

assuming that lim,_, .. z(¢)e™*" iszero. Fortunately, thiswill not reduce the ROC of the original transform X (s). This
property can be generalized to the nth derivative by considering the transform of % [%].

Integration [*_ a(r)dr ¢ 2L 4 1 (% 4(r)dr, ROC: at least theintersection of that of «(¢) and Re(s) > 0
Proof by integration by parts.

Multiplicationby ¢ tx(t) < — () ROC: same asthat of (1)

If we differentiate X (s), we get:
dX(s) _ d [ st
I = ds[o_ z(t)e™* dt]
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Multiplicationby e=** e~z (¢) ++ X(s + ), ROC: same as that of z(¢), shifted by Re («)

Lle=z(t)] = /C_X’ e~ (t)e*tdt
- /Oox(t)e_(s"'o‘)tdt

= X(s+a)

Initial valuetheorem lim,_, o, sX(s) = #(07)
From the differentiation property, we have:

Cl(1)] = sX(s) - 2(07)

Taking thelimit as s — oo, on the left-hand side we have:

lim L[z(¢t)] = lim /iod:(t)e_”dt

§—00 §—00
_ H . —st
= /_ sll}rgo[x(t)e ]dt
=0

if s fallswithinthe ROC. Thisthen impliesthat:

lim sX(s) = =(07)

§— 00

as desired. This assumes that z(¢) does not have a second order discontinuity at ¢ = O [iethe IVT will work if z(t)
has a step-likediscontinuity at t = 0, such as f(t)u(t), but not if z(¢) hasadetafunctionat ¢ = 0].

Final valuetheorem lim,_¢sX(s) = z(oc0) if limy, o 2(t) exists
Starting once again from the differentiation property, but taking the limit as s — 0, on the left hand side we have:

limClz(t)] = Iim/iod:(t)e_”dt

s—0 s—0

= /io z(t) lim[e™*"]dt

= /Oo (t)dt

= lim z(t) —«(07)

t—=00

Thetota equation is then:

lim x(t) — «(07)

t—=00

li_%sX(s) —z(07)

limsxX(e) = Jim =()
Unfortunately, if lim._, . () does not exist, lim,_,o sX (s) will give you abogus answer. Thisis because if you put
polesin theright half plane, there will be exponentially growing termsinstead.

Exercise Familiarize yoursdf with these properties. Derive the proof of the integration property. Make sure that the
changes to the ROCs make sense.
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3 Some Useful ULTs

J(t) < 1,ROC: all s
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Note that thisis why we need to define the lower limit as 0.

u(t) <+ 1, ROC: Re(s) > 0

X(s) = Llu(®)]
= / u(t)e_“dt
o-
= / et
_ } —st |0
= - Se lo~
_ 1
- S
This can also be performed by the integration property.
e~ "u(t) < sia ,ROC: Re (s) > —Re (a)
X(s) = Lle~"u(t)]

oQ

/ e_atu(t)e_“dt
o-
/ e—(s+a)tdt

o-

1
- _ —(s+a)t|co
s e lo~

s+a
sinwotu(t) <+ %7, ROC: Re(s) > 0
0

X(s) = CL[snwgtu(t)]
1 i 1 W
= 2—j£[e] u(t)] — 2—j£[e Tty (1))
1 1 1 1
2js—jwo  2j s+ jwo
wo
52+ w3

Note that the ROC comes from the transforms of the complex exponentias.
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coswotu(t) <+ 777z, ROC: Re(s) > 0

d . .
7 Sinwetu(t) = woCoSwotu(t) + Sinwgtd(t)
= wpCoSwotu(t)
d .
E[E sinwotu(t)] = wol[coSwotu(t)]
Cleoswotu(®)] = —£[L sinwtu(t)]
Wot U = “o i wotu
_ i wos
T wo s+ wj
B s
524w

te™ % u(t) < m ROC: Re(s) > —a Themultiplicationby ¢ property applied to L[e~* u(t)] = sia gives.

d 1

_Es—i—a
1

(5 + a)?

Lle™u(t)] =

e~ sinwet (SJF(;"W ROC: Re(s) > —a The multiplication by e~ property can be applied to the Laplace

transform of sinwotu(t) to give the above result.

e” % coswot +> (s:;fﬁ ROC: Re(s) > —a Another application of the multiplication by e~** property.

4 Utility Value

Now, all thistransform stuff is nice and mathematical, but what good isit?
WEell, the convol ution property allows usto study systems. From thethird week of thisclass, we saw that the output
of asystem y(t) isthe convolution of theimpulse response A (¢) with theinput z(t):

y(t) = h(t) x z(t)

If we take the Laplace transform:

or
Y(s)

X(s)
Nothing new; we aready saw thiswith Fourier transforms. However, we can now put in signalsfor which the Fourier

transform does not exist, such as e’ u(¢) and r(¢).
So starting from an LDE-CC [linear differential equation with constant coefficients], we can derive the transfer

function H (s) by simply taking the LT of both sides, with z(t) & X(s) and y(?) & Y(s):

M
Zbll‘(l)
(=0

M
aks(k)Y(s) = Zbls(l)X(s)—l—A(s)
=0

H(s) =

N

ary
k=0

(%)

N

k=0
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1 M

l
Y(s) = m[; bis X (s5) + A(s)]
where A(s) = an[sV " y(07) + sV 2yDO07) + ...+ yP=D(07)]
+an_1[sV2(07) + sV 3 ) (07) + .. 4+ N2 (07)]
+...+ay(07)

If we take the inverse transform of this, the term to the left on the right hand side will give you the ZSR. The term to
theright on the right hand side will give you the ZIR. [Some may think thiseasier than solving the LDE, but you end
up doing alot of algebra; your mileage may vary.] If we zero al theinitial conditions:

Y(s)
X(s)
Zi‘io bis'
Zivzo ays*
So what is the relationship between the Fourier transform and the Laplace transform? For a causal signal/system

[thismeans that the ROC will beto theright of the rightmost pole; more on thislater], if the ROC containsthe jw axis,
then then evaluating the ULT on the jw axiswill giveyou the FT:

H{(s)

X(jw) = X(8)ls=jw

If the jw axisis not in the ROC, then evauating the LT on the jw axis and taking the inverse FT gives you a time
function completely different from the one of which you took the Laplace transform.

5 Magnitude and Phase Plots
Let'sconsider an H (s) of the form (generalize in the privacy of your own dorm room):

(s +21)(s + 22)
(s+p1)(s+p2)

where z1, 22, p1, and p, are real and s is restricted to the jw axis. If we just look a jw + 21, in polar thisis
V22 + wie’ acan 3 where the square root junk is the magnitude and the arctan garbage is the phase. If we do thisfor
each set of expressions in parenthesesin H (jw), we get awhole bunch of polar things on the top and another whole
bunch of polar things on the bottom. If we then look for | H (jw)|, thisisjust the product of all the magnitudes on the
top divided by the product of al the magnitudeson the bottom. If welook for ZH (jw), thisisthesum of all theangles
on thetop, minusthe sum of all the angles on the bottom (since the angles are in the exponents, they add and subtract,
instead of getting multiplied and divided).

We can then plot the magnitude on a linear or log-log scale, and the phase on alinear or log-linear scale. If we
stick to alog-log scale in magnitude and alog-linear scale in phase, we have Bode plots, asin ee40.

Bode plotsare useful thingsto know. However, since they are pretty painful to draw out, i’ll just direct you to the
review modules and your old ee40 book.

The one caveat is that the techniques that you were taught for Bode plots do not work correctly if the poles are
complex-valued. More on thisin ahit.

H(jw) = H(s)|s=jo =

|s:jw

6 Polesand Zeros

For the large majority of systems that we will study, the transfer function can be written in terms of a numerator
polynomial N (s) and a denominator polynomia D(s). The rootsof N (s) are called zeros and the rootsof D(s) are
called poles.

A plot of these polesand zeros, called apole-zero diagram, uniquely describes atransfer function, up to aconstant.
The zeros are marked on the complex s plane as circles; poles are marked on the same plane as crosses.
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The denominator polynomial, sometimes called the characteristic polynomial, determines a large portion of the
behavior of the system. One way to see thisis to take the inverse transform the output transform Y (s) for a given
input transform X (s). SinceY (s) = H(s)X (s), factoring D(s) and taking the partial fraction expansion is going to
giveyou a bunch of terms; the time function that corresponds to some of these terms is determined by the roots of the
denominator of X (s), but other termswill be determined by the roots of the denominator of H (s). Moreonthisina
bit.

7 Vectorial Interpretation

On apole-zero diagram, draw avector from the origin aong the jw axis. Cal thisvector (credtively) jwo.

o (a) Draw vectors from the zeros to the head the jwq vector. The product of the magnitudes of these vectorsis
the magnitude of the numerator of thetransfer function at w = wg. The sum of the angles of these vectorsisthe
phase of the numerator at w = w.

o (b) Draw vectors from the poles to the head the jwq vector. The product of the magnitudes of these vectorsis
the magnitude of the denominator of the transfer function at w = wg. The sum of the angles of these vectorsis
the phase of the denominator at w = wy.

¢ (c) Divide the magnitude of the numerator by the magnitude of the denominator. This is the magnitude of the
transfer function at w = wq. Subtract the phase of the denominator from the phase of the numerator. Thisisthe
phase of the transfer function at w = w.

Because i’ m sort of pressed for time right now, please take alook at 590-594 in your textbook.

For an analog method of finding the magnitude response from the pole-zero diagram, get a rubber sheet (the same
one you used in physics for imagining how gravity affects space and time), some tent poles, and some thumbtacks.
Find aplot of ground, and draw therea and imaginary axeson it (thisisthe complex plane). Stretch the sheet over the
ground. Push up the sheet at the polelocations using the tent poles. Take the thumbtacks and shove them through the
sheet and into the ground at the zero locations. Admire your handiwork. Do not use thisfor a trampoline. You will
damage the polelocations.

8 Stability and Causality

The poles of the transfer function in combination with the region of convergence determine the stability and casuality
of the system.

Causd systems will have a region of convergence heading off to theright. Anticausal systemswill have aregion
of convergence heading off theto the left. [justification and other fun facts about ROCsin section 9.2 of OWY ]

By definition, no poles can appear in the ROC [otherwise it wouldn't be called a ROC]. Stable systems will have
ROCs containing the jw axis. Unstable systems will have ROCs that do not contain the axis.

One of the measures of stability is bounded input, bounded output stability (BIBO stability). This means that if i
make asignal that isfinitefor al time and put it into a system, the output isfinite for al time.

We can then determine BIBO stability from the transfer function. All the poles must be in the open Ieft half plane
[Re (s) < 0], and the numerator must have degree less then or equd to that of the denominator.
Exercise Verify the statement in thelast paragraph. Consider asystemwith apoleintheright half plane[Re (s) > 0]
and put in aunit step into the system. Look at the system’s time response. Also consider a system with the degree of
the numerator greater than the degree of the denominator. Notice that there will be derivatives of the deltafunctionin
the impul se response, giving atime response that will be unbounded for a step input.

9 First Order Systems

If we consider the order of a system as the order of the denominator polynomial, a first order system would have a
transfer function of the form:
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This system will have again of unity at low frequencies, the gain rolling off at 20dB/decade beginning at s = %
For stable, causal, and real first order systems, this corresponds to an impul se response of :

h(t) = Ee_t/Tu(t)

-
Integrating thisimpul se response from —oo to ¢ gives us a step response of

yuo(1) = (1= ¢TJu(t)

Note that the step response exponentialy decays to 1, leading someto call thefirst order system afirst order lag.
Note that if the poleisin theright haf plane [such that = < 0], then the system will be unstable, since the output
will contain an exponentially increasing term e —*/7 for any input.

10 Second Order Systems

Second order systems are more fun, since thereis more than oneway to arrange the poles. Let’s assume that the system

has a transfer function of the form:

w2

H(s) = 82 + 20wy s + w2
where ¢ iscaled the damping ratio and w,, isthe natural frequency.
Stable, causal, and real second order systems of thisform can be classified into three different types, depending on
pole location.
¢ poleson real axis (overdamped, ¢ > 1)
e polesat same location on real axis (critically damped, ¢ = 1)
e polesincomplex conjugate pairs (real system implied, underdamped, ¢ < 1)

The best way to see how ¢ affects the polesisto use the quadratic formulaon the characteristic polynomial:

— 2wy + \/ACPw2 — 42
2

= —(wn Fwp/C2-1

For ¢ > 1, thepolesare on thereal axis. For { = 1, both of the poles arein the same place. For 0 < { < 1, the poles
show up as a complex conjugate pair.

Some interesting facts: as ¢ isvaried from 0 to 1, the poles move in a semicircle with radius w,, centered on the
origin. As¢ isvaried from 1 to oo, thepoles stick to thereal axis. One goesflying out to — o, and the other approaches
theorigin.

Exercise Verify these facts. [To notice the semicircle, take the magnitude of the polesfor 0 < ¢ < 1 and watch the
dependence on ¢ disappesr.]

Another more fun thing to do is study the step responses of these systems. Let’s do this by example instead, since
it will make life easier. Let w,, = 4 and examine step responsesfor ¢ = 3, ¢ = 1,and( = 2.

For ¢ = 2, the characteristic polynomial becomes s2 + 10s + 16, which can be factored into (s + 2)(s + 8). The
transfer functionis:

16
H(s) = ————
=269
If we'relooking for the step response, z(¢) = u(t), whichmeans X (s) = 1. y(t) isthen theinversetransformof Y (s)
[athough you need to perform the proper partia fraction expansion]:

Y(s) = H(s)X(s)
B 16
 (5+2)(s+8)s
_—4/3 13 1
T s+2 s+8 ' s

W) = [-ae® 4 2% 4 1u()

3 3
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(b) critically damped
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(c) underdamped

Figure 1. The classes of second order systems.

Note that the step response, sketched in Figure 1(a), has two exponentially decaying terms, in addition to the step.
The step results from the input, but the exponentially decaying terms come about because of the particular poles. So
the pole locations are very important. In fact, for large ¢, the pole closest to the jw axis will give an exponentialy
decaying term that will dominate the time response.
Exercise Why?

For ¢ = 1, the characteristic polynomial becomes s2 + 8s + 16, which can be factored into (s + 4)2. The transfer

functionis:
16

M) =rap

If we'relooking for the step response, z(t) = u(t), whichmeans X (s) =

y(t) isthentheinversetransformof Y (s)
[use the normal partia fractionstrick to get the coefficients for the % and —=

1
e terms, and the derivativetrick for the

s+4
s+4 term]: o
Y(s) = H(s)X(s)
B 16
= Gy
1 -1 4
T S Tira T Grap
y(t) = [L—e % —dte¥u(t)

Note that the step response a term of the form te=¢. Thisiswhat makes having a critically damped system so grest,
sincethetimeresponseisthat sketched in Figure 1(b). It barely overshootsand is otherwise quite beautiful. Achieving
such atime r&ponse isthe holy grail for control people

For¢ = 2, the characteristic polynomial becomes s2 + 4s 4 16, which cannot be elegantly factored into real terms.
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The transfer functionis: 16

H(s) = 50—
() s2 4454 16
If we'relooking for the step response, z(t) = u(t), whichmeans X (s) = 1. y(t) isthen theinverse transformof Y'(s)
[partial fraction expand with  and A5, complete the square to get the denominator to be (s + 2)? + 12, and use
table lookup]:

Y(s) = H(s)X(s)
B 16
- (s2+4s5+16)s
1 —s—4
= ST et 2
1 s+2 2
T s (5422412 (5422412
y(t) = [1—e % cos2V3t— ie_Zt sin2v/3tu(t)

V3

Note that the step response has is the sum of two exponentialy decaying sinusoids. As¢ — 0, thetime response, as
sketched in Figure 1(c), approaches a purely sinusoidal response, since the poles end up on the jw axis. In fact, asthe
poles get redlly closeto the jw axis, the magnitude of the frequency response becomes extremely large, and the phase
response changes tremendoudly.

In fact, if we have alot of poles and zeros, a decent first order approximation isto just to punt al the poles and
zeros sufficiently far away enough from the jw axis, and deal with the leftovers. Of course, we' |l need to make sure
that the stuff that we punted actually doesn’t cause us a large headache later on.

11 Putting Everything Together

We have seen five mgjor ways to represent a system:

by transfer function

by linear differential equation (LDE)
by magnitude/phase response

by pole-zero diagrams

and by time response

You should be able to convert from one representation to another:

(a) transfer function to time response:
use partial fraction expansion and then Laplace transform table lookup.

(@) time response to transfer function:
Laplace transform the time response.

(b) transfer function to magnitude and phase response;
let s = jw. Use Bode plotting tricks if poles and zeros on rea axis.
Otherwise: use (c), then (d).

(b") magnitude and phase response to transfer function:
Determine number of polesand zeros by examining thebehavior asw — 0and w — ~o. Determinethe ordering
of the poles and zeros by examining all the stuff in between. If the the magnitude response goes up, thereis a
pole around there somewhere. If the magnitude response goes down, there may either be a zero around there, or
you may be sufficiently far away from a pole not to see its effect. In general, poles and zeros closer to the jw
axiswill have greater effect on the response than poles and zeros farther awvay. Choose and fine-tune locations
of polesand zeros appropriately.

(c) transfer function to pole-zero diagram:
Find roots of numerator of transfer function. These are zeros. Find roots of denominator of transfer function.
These are poles. Plot.
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(') pole-zero diagram to transfer function:
Construct numerator from zeros. Construct denominator from poles. You may be off by some multiplicative
factor (gain) though.
(d) pole-zero diagram to magnitude/phase response:
Let s = jw. Usethevectoria interpretation.
(d") magnitude/phase response to pole-zero diagram:
Use (b'), then (C').
(e) pole-zero diagram to time response;
Poles closest to jw axis will dominate response if other poles are sufficiently far avay. Because systems are
restricted to be realizabl e ones, they will have red coefficients, so zeros and poleswill exhibit complex conjugate
symmetry. If the system isto be causal and stable, its poles should be in the open Ieft haf plane. If you have a
single dominating pole on therea axis, you will have afirst order time response. If you have a conjugate pair
of dominating poles, you will have a second order time response.
For best results, however, find transfer function and then partia fraction expand.
(') time response to pole-zero diagram:
Befamiliar with commentsin (e). If you have the equations for the time response, use (&), then (c).
(f) LDE to transfer function:
Let z(t) < X (s) and y(t) <> Y (s). Rewritederivativesusing differentiation property. Solvefor H(s) =
(f') transfer function to LDE:

Since H(s) = };8 , cross multiply to obtainan equationin s, X (s), and Y (s). Theninverse Laplace transform.

Y (s)
X(s)

12 A Look Ahead and Behind

Feedback and more on stability! Great stuff. Everybody should take ee128.
You might want to go back and review the relationship between the three transforms we have learned so far: FS
[yes, you can think of it as atransform], FT, and LT.

e FT — FS: intime, make () periodic by convolving with an impulsetrain; in frequency, make X (jw) discrete
by multiplying with the transform of that impulse train, which is another impulsetrain.
e LT — FT: evaluate X (s) onthe jw axis.



