
1

Notes 13 largely plagiarized by %khc

1 Amplitude Modulation (AM)

There are three major amplitude modulation schemes that we will study:

� dual sideband, large carrier (AM-DSB-LC),
� dual sideband, surpressed carrier (AM-DSB or AM-DSB-SC),
� and single sideband (AM-SSB).

In this set of notes, we will only discuss the dual sideband schemes, leaving single sideband until next time.

2 AM Transmission

In AM-DSB-LC, the transmitted signal is:

x(t) = (1 + �m(t)) cos!ct

= cos!ct+ �m(t) cos!ct

In AM-DSB-SC, the transmitted signal is:
x(t) = �m(t) cos!ct

AM-DSB-LC is otherwise known as broadcast radio; a large DC component is added to the message before modulation
occurs. AM-DSB-SC saves you the expense of having to broadcast the shifted DC component; you’ll end up saving on
the power, but your receiver is going to require some synchronization with the carrier in order to recover your message.

Block diagrams for the transmission schemes are shown in Figure 1.
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Figure 1: AM transmitters.

Exercise Verify that the block diagrams give the transmitted signals above.
Let’s examine each of these transmitters in the frequency domain, by watching what happens to an input signal

m(t) with triangular Fourier transform M (!).
Exercise Verify that m(t) is going to have a sinc2 shape.

With AM-DSB-LC, ourM (!) gets scaled by � and then gets superposed with an impulse centered at ! = 0 [from
the constant 1 that gets added to the scaled message]. Multiplication with a cosine in time replicates the composite
spectrum from the previous step [scaled by 1

2 , since the impulses in the cosine are scaled by �, but the convolution in
frequency brings with it another factor of 1

2� ] in frequency, one copy at !c and the other at �!c. This is illustrated in
Figure 2.

In AM-DSB-SC, the spectrum is similar to that of AM-DSB-LC, except that the impulses at !c and �!c are not
present. This is illustrated in Figure 3.
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Figure 2: AM-DSB-LC in the frequency domain.
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Figure 3: AM DSB-SC in the frequency domain.

Exercise Verify the frequency domain representations of the transmitted signal for both AM-DSB-LC and AM-DSB-
SC.

Note that we are wasting bandwidth. Our message has half the bandwidth of the transmitted signal.

3 AM Reception

Let’s assume that we have stations transmitting x(t) in either DSB-LC or DSB-SC format. Once the signal has been
transmitted, we need some way of receiving that signal. The block diagrams of two of the simplest receivers are given
in Figure 4.
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(a) AM receiver with synchronous demodulator

(b) AM receiver with asynchronous demodulator

Figure 4: AM receivers.

Note that each receiver has an RF amplifier. The point of an RF amplifier is to make sure that you receive only one
station at a time [i don’t know about you, but i have a hard time listening to two things at the same time]. For now,
let’s assume that the RF amplifier is a tunable ideal bandpass filter with H(!) = 1 for !c � !M < j!j < !c + !M ,
where !M is the message bandwidth.

We analyzed the action of the synchronous demodulator in the time domain in ps3, problem 10. But now we can
also look at it in the frequency domain.
Exercise Go back and check out ps3, problem 10. Make sure that you understand the solution set.
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As in the transmitter, the multiplication with the cosine makes two more copies of the spectrum. So the output of
the multiplier will have spectrum Y (!) as in Figure 5. If our LPF has frequency response H(!) = 1 for j!j < !M ,
we can then recover our original message, modulo a gain factor. Note that if the frequency at which we demodulate is
slightly off, we are not going to get the message, but some random mess.
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Figure 5: Synchronous demodulator in the frequency domain.

Exercise Verify that this synchronous demodulator can also demodulate AM-DSB-SC format signals.
The asynchronous demodulator is slightly more interesting. As previously discussed in lecture, with the same RF

amplifier as that used above in the synchronous demodulator, the output of the rectifier is the absolute value of the input
[assuming that the rectifier is a full-wave rectifier]. The LPF then acts as a peak detector, smoothing out the ripples in
the absolute value of the received signal. This serves to pick off the envelope of the received signal. After running the
envelope through a blocking capacitor to get rid of the DC term,1 we can then drop the rest of the signal into a speaker
to get our daily dose of Rush Limbaugh2. This process in the time domain is lamely illustrated in Figure 6.
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Figure 6: Asynchronous demodulation in the time domain.

A full wave rectifier takes the absolute value of its input. If the input is some modulated even signal x(t) that
periodically changes its sign, this is the same as multiplying the input by an even square wave s(t) of �1 peak-to-peak
amplitude with the same period as the sign change in x(t), as in Figure 7. This trick then permits us to examine what
happens in the frequency domain. s(t) is the sum of twice the standard even square wave less a constant of 1. An even
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Figure 7: The decomposition of s(t).

square wave has FS coefficients ak = 1
k�

sink2� T1
T

. With our particular choice of period and duty cycle, T1 =
�

2!c

1Sound is variation in pressure, we can’t hear DC at all. If we didn’t run the DC through a blocking capacitor, all we would end up doing is
heating up the speaker, making it more nonlinear, messing up the frequency response, and wasting power.

2Nothing like Rush to give that digestive tract a good reaming
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and T = 2�
!c

. Twice an even square wave then has FS coefficients ak = 2
k�

sink �2 . Subtracting the constant just zeros
a0. So the FS of s(t) has coefficients:

ak =

�
0 if k = 0

2
k�

sink �2 otherwise

Note that the even coefficients of s(t) are zero, since s(t) exhibits half wave odd symmetry.
The FT of s(t) is then

S(!) = 2�
1X

k=�1

ak�(! � k!0)

= 2�
X
kodd

(
2
k�

sin k
�

2
)�(! � k!c)

Note that S(!) only has nonzero impulses for odd k.
Now we multiplyx(t) by s(t) to get y(t) = jx(t)j. This means we have to convolve X(!) with S(!) in frequency

[with a factor of 1
2� ] to get Y (!). This convolution replicates the spectrum of X(!) quite a bit, as partially illustrated

in Figure 8. If our LPF has frequency response H(!) = 1 for j!j < !M , we can then recover our original message,
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Figure 8: Asynchronous demodulation in the frequency domain.

modulo a gain factor.
The important thing to note here is that this is a mathematical trick that lets us perform the analysis of this system

in the frequency domain. Contrary to popular belief, there is no square wave generator anywhere in the circuit.
Exercise Redo this frequency domain analysis for a half wave rectifier. Note that you will have to use a square wave
with an amplitude that varies from 0 to 1.


