

1 Fourier Transform and Inverse Fourier Transform

We've seen the Fourier transform and its inverse a billion times.

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

But does $\mathcal{F}^{-1} \mathcal{F}[x(t)]=x(t)$? Let's check it out:

$$
\begin{aligned}
\mathcal{F}^{-1} \mathcal{F}[x(t)] & =\mathcal{F}^{-1}\left[\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right] \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{-j \omega t^{\prime}} d t^{\prime}\right] e^{j \omega t} d \omega
\end{aligned}
$$

At this point in time, we use the time-honored method of interchanging the integrals without bothering to justify this step.

$$
\mathcal{F}^{-1} \mathcal{F}[x(t)]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x\left(t^{\prime}\right)\left[\int_{-\infty}^{\infty} e^{j \omega\left(t-t^{\prime}\right)} d \omega\right] d t^{\prime}
$$

Let's take some time to check out that inner integral.

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{j \omega\left(t-t^{\prime}\right)} d \omega & =\lim _{W \rightarrow \infty} \int_{-W}^{W} e^{j \omega\left(t-t^{\prime}\right)} d \omega \\
& =\left.\lim _{W \rightarrow \infty} \frac{1}{j\left(t-t^{\prime}\right)} e^{j \omega\left(t-t^{\prime}\right)}\right|_{-W} ^{W} \\
& =\lim _{W \rightarrow \infty} \frac{1}{j\left(t-t^{\prime}\right)}\left[e^{j W\left(t-t^{\prime}\right)}-e^{-j W\left(t-t^{\prime}\right)}\right] \\
& =\lim _{W \rightarrow \infty} \frac{2 \sin W\left(t-t^{\prime}\right)}{\left(t-t^{\prime}\right)}
\end{aligned}
$$

Warning: handwaving follows. As $W \rightarrow \infty$, the frequency of the sine goes through the ceiling. This means that if we move $t-t^{\prime} \epsilon$ units left or right, the sine is going to give us a drastically different value, but its average value is going to be effectively zero. So this integral will be equal to zero for all values of $t-t^{\prime}$ not equal to zero.

Only at $t-t^{\prime}=0$ do we have a nonzero value. Since the area of the sinc does not depend on frequency $\left[\int_{-\infty}^{\infty} \frac{\sin W t}{t} d t=\pi\right]$, all the area ends up right under an impulse centered at $t-t^{\prime}=0$. So

$$
\int_{-\infty}^{\infty} e^{j \omega\left(t-t^{\prime}\right)} d \omega=2 \pi \delta\left(t-t^{\prime}\right)
$$

We then have:

$$
\begin{aligned}
\mathcal{F}^{-1} \mathcal{F}[x(t)] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x\left(t^{\prime}\right)\left[\int_{-\infty}^{\infty} e^{j \omega\left(t-t^{\prime}\right)} d \omega\right] d t^{\prime} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x\left(t^{\prime}\right) 2 \pi \delta\left(t-t^{\prime}\right) d t^{\prime} \\
& =\int_{-\infty}^{\infty} x\left(t^{\prime}\right) \delta\left(t-t^{\prime}\right) d t^{\prime} \\
& =x(t)
\end{aligned}
$$

using the sifting integral. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ This material was lifted from Prof. Fearing's lecture notes from fall 1994.

