N OteS 06 largely plagiarized by %khc

1 Fourier SeriesRevisited

Parts of thissection are recycled from notes05. i fedl thisinterpretation is sufficiently important that it bears repeating.

Any signal can be decomposed into a sum of appropriately scaled basis functions. Recall linear algebra if you
ever took it. A basisisalinearly independent set of vectors that spans a vector space; the number of vectorsin that
linearly independent set isthe dimension of the vector space. We can think of avector space of functionsand imagine
a set of basis functions for that space. We could try {1,¢,2,¢3,.. }— thisis one basis that you have seen aready
(think Taylor series). But for the Fourier series, we use the complex exponentials, each an integer multiple of some
fundamental frequency.

Of course, we could always use another set of basis functions, but complex exponentia swill suffice for now.

Onegood thing about making thebasi sfunctionsorthogonal isthat the presence or absence of agiven basisfunction
does not affect the contribution of the other basis functions, so we can add or del ete the contribution from agiven basis
function without changing the coefficients associated with the other basis functions. That means all we haveto do is
calculate a given a;, once and only once.

Another thing to keep in mind— Fourier series are valid only for periodic signals. The periodicity in time forces
the FS coefficientsto be discrete in frequency. Periodicity in one domain forces discretenessin the other domain. This
fact will show up again later on down the road when we talk about the discrete-time Fourier transform (DTFT) and the
discrete Fourier transform (DFT).

How in the world does one remember the Fourier series analysisintegral? Well, in addition to writing it a billion
times, one way is to remember the derviation. We multiplied took the complex conjugate of the basis function,
multiplied it by x(t), and integrated over one period in time. The 4 comes about becauise the basis functions have not
been normalized to unity.

At this point in time, it might be useful to familiarize yourself with Table 4.2 on page 224 of your textbook (if
you've never opened your textbook, then you might want to get your $70 worth). Table 4.3 on the next page also
contains some useful information in the form of the Fourier series for some common functions.

2 SomeFourier Series

square wave: period T'; over one period: unity for |¢t| < T7, zero elsewhere in that period (illustrated in Figure 1).
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Figure1: A square wave.
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This sme formiscaled asinc. Notethat thesincis not undefined at » = 0 (usel’ Hopita'srule).
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n—=—oQ

Ak

T/2
Ls

Note that the period of thisfunctionisnot 7.
Exercise Why? What isthe actua period?
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A detailed discussion of the FS properties will not be made here. Instead, i choose to reserve this discussion
until later on when we talk about the Fourier transform. Suffice to say that even those i choose to do that, you are
il responsible for the properties on your midterm examination. Table 4.2 contains the relevant information on FS

properties.

Please note that the integration property isvalid only for signasthat have no DC component [you cannot integrate
asigna withDCinit from¢ = —oo and expect theintegra to be bounded)].
However, symmetry properties will be discussed in the next section.

3 FSSymmetry Properties

In previous math classes, you were introduced to the following two expressions for the even and odd portions of a
function, as well as two expressions for the real and imaginary parts of afunction:

Ev x(t)
Od (1)
Re x(t)

Im z(t)

1 1

Ex(t) + 5%
%x(t) - %x
%x(t) + %x
%x(t) - %x
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However, these notions of evenness and oddness are only for real valued functions. For complex valued functions,
we extend the definitionsto:

1 1

CSz(t) = Ex(t) + Ex*(—t)
1 1
CAS z(t) = Ex(t) - Ex*(—t)

where CS stands for conjugate symmetric and C.AS stands for conjugate antisymmetric. Note the presence of the
complex conjugates on the second term in each expression.
Using our standard definition for FS coefficients, we find:
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Applying theabovemessto therel ati onshipsfor conjugate symmetric, conjugateantisymmetric, rea, and imaginary,
we find:
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1 1
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1 1 1 1
1 1 1 1
1 1 1 1

In other words, real in one domain gives conjugate symmetric in the other domain; imaginary in one domain gives
conjugate antisymmetric in the other domain.

4 A Filtering Problem

Given theinput «(¢) and filter specification A (w) for an LTI system in Figure 2, determine the output.
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Figure2: A filtering problem.

How do we approach this problem? Well, the input is periodic with period 3, so this suggests finding the Fourier
series of theinput. We can then apply the fact that ¢/“* isan eigenfunction for LTI systems, so the output will be each
component of the input multiplied by some complex constant that we can get from H (w).

Let’s first determine the Fourier series of theinput. Withwo = &
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Previously, we determined that if the inputis z(t) = > ;2 ___ axe/*“o and we know H (w), then the output is
y(t) = >S_p_ . apH(kw)elkwo'. But take alook a H (w)— it's nonzero only in two small intervalsof w. So let's
take alook a what w = kwq can go through thisfilter. We summarize the resultsin Figure 3. Since H (w) isnonzero

only for £ = 3and k¥ = —3, thefilter only passes the third harmonic (yes, don’t forget the negative stuff). From our

formulafor ay, wefind az = =2-. Since z(¢) isred, a* , = as.
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Figure 3: w asafunction of &.
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Our output isthen:
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5 A Sample Midterm Problem

[Fall 1994 midterm] In Figure 4a, =(t) is sketched. Since () is periodic [and satisfies the Dirichlet conditions], we
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(a) x(t) is a periodic function
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(b) a periodic x(t) is dropped into an LTI system

Figure 4: Figuresfor amidterm problem.

can represent z(t) asa Fourier series: z(t) = > ;2 ___ axe/*wof. The question asks:
1. whatisag?
2. whatisa;?
3. whatisas?

From above, we know that a square wave has FS coefficients ¢, = ;= sin2kr L. Weidentify 71 = 3 and 7' = 2,
Oc; = %Sinkﬂ'/Z. But thisisnot a; (well, for one, i called it something else). We aso need to account for adelay
of 1 unitsand an offset of 1. From our table of interesting FS properties, we find that a delay of ¢, just multiplesthe
FS coefficients by e75o%_ So we need to multiply c; by e/*«0z = ¢i*7/2 = (_j)k: ) = (—j)¥cx fordl k # 0. For
k = 0, thisisjust the DC level of thissignal, which can be found by inspection. ag = % ay=—%,andas = —&-.
Exercise In Figure 4b, a periodic function z(t) = >;7 s"‘:—:/zej’“” is input to an LTI system with impulse
response h(t) = §(t) — E~"u(t). Theoutputisy(t) = S_o2_ _ byel* .

. what isbg?
. whatisb,?

. what isthe power in the fundamental frequency of =(t)?

A W DN P

. what isthe power in the fundamental frequency of y(t)?

Verify that H (w) = 11% ,that bo = 0, that b1 = 147? that the power in fundamental of z(t) is %, and that the power

in fundamental of y(t) is 2.
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6 A Look Ahead

Fourier seriesis for periodic signals. Next we'll tackle aperiodic signals with the Fourier transform and try to draw
some rel ationshi p between the two.



