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1 Signal Operations

We have seen a number of operationsthat can be performed on signals:

scale change

timereversa

time shift

¢ linear combination
For fun, let’stry constructing z(a — t).
To check your work, verify afew interesting pointsin z(a — ¢). First, let'sdefine y(¢) equal to z(a — t). Notethat
y(t) at = a + 1 shouldbeequa to z(¢) att = —1; thiscan be seen by looking a Figure 1. Sincey(t) = z(a — 1), a
t=a+1lwehavey(a + 1) = z(a — (a + 1)) = x(—1), asdesired.
Why did we bother doing this? Well, we're going to need it for the sifting and convolutionintegrals.

2 Periodic Signals

A signa is periodic if it satisfies the equation: z(t + 7)) = «(t). Of the signads we will study in the course, the
sinusoids are going to be encountered most frequently.
If we have two sinusoidssinax and sinbz, istheir sum periodic? What restrictions must we make on a and b?
f(x) = sSnar+snbx
fla+T) = sna(z+T)+snb(x+7T)
= dginaxcosal + cosax sinal’ + sinbx cosbT + cosbx SiNbT'

If wewish f(z) = f(x + T), then cosaT = cosbT = Lland sinaT = sinbT = 0. S0 «T = 2rm and bT = 27n,
where m and n areintegers. SincetheT" are the same, we then have m/n = a/b. Because m and n are integers, this
impliesthat a/b isrational. Does this make sense? Say we have two sinusoids, one with period 1 and the other with
period 7. Arethe zero crossings ever goingto match up? No.

Of course, thisworksfor cosines and combinations of sines and cosines.
Exercise Verify this.

3 Complex Exponentials
We have seen Euler's identity before (although perhaps in a previous life). This comes from considering the Taylor
seriesfor cosz, sinz, and e”.

From calculus, a Taylor series about some point = = a isdefined as:

J@) = fla)+ [(a)(w—a)+ f”( ) —a)®+ ..

_ if r—a)
k=0

If we apply the above formulato cosz, sinz, and e”, al expanded about = 0, we get:

k

l‘z l‘4
. l‘s l‘s
Snx = g—i—g
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e’ = 1—|—x—|———|———|———|——...

3! 5!



EE120: Signalsand Systems; v5.0.0 2

In particular, if we look for ¢/, we obtain:

jo o _ ) Gt (Ge)t U
e I I T
l‘z l‘4 . l‘3 l‘s
= cosz+jsSinz
An exceedingly cool thingisto note that '
T = -1

Thisissimilar to going on vacation in East Kalamazoo, M1, walking by a cafe, and seeing four friends sitting there.
This alows us to find aternate ways of representing cosz and sinz. Adding ¢/* = cosz + jsinz and e=7% =
Cosz — jSinz gives:
1. . .
cosz = E[e” + e

Subtracting the two gives:

sinz = Z—j[e” —e77]

The complex exponentials e/“! are a subset of the exponentials e*! where s = o + jw. If weexamine Re e*!:

Re et

Re [eatejwt]
Re [e7" (coswt + jsinwt)]
= ¢ coswt

We could have three different types of functions depending on the value of o
o aexponentially growing sinusoid if ¢ > 0.
e anot-so-interestingsinusoid if o = 0.
¢ an exponentially decaying sinusoid if o < O.

If you'veever used ATT s calling cards, the“bong” that you hear when you are prompted for your calling card number
is an exponentially decaying sinusoid.
Exercise ExamineZm e*'. Make some useful statements.

Why bother studying these also? Well, complex exponentials are going to show up quitealot as.

o eigenfunctionsfor linear, timeinvariant systems.
e modulation.
o solutionsto second order linear differential equations that describe second order systems.

If nothing €l se, make sure that you are familiar with the aternate definitions for cosine and sine, since they will keep
showing up.

4 A Look Ahead

We will be needing signal operationsfor the convolutionintegral. Make sure that you know how to generate f(a — t),
with a constant, ¢ variable.



EE120: Signalsand Systems; v5.0.0

X(t)
/-\ t
N
-1
ke and | x@t-1)  generalizesto  x(t-a)
/\\ t /\I t N | t
B ~ L]
@y
| >t

(a) one method of constructing x(a-t)
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(b) another method of constructing x(a—t)

Figure1: Constructingz(a — t).



