EEl 119 Homework 3 Solution-
Professor: Jeff Boor TA: Xilno

1. (2)

First we need to find the incident angle I. From the law of sines, we know that

$$
\begin{gathered}
\frac{\overline{M O}}{\sin \theta}=\frac{\overline{P O}}{\sin \left(180^{\circ}-I\right)} \Rightarrow \frac{R}{\sin \theta}=\frac{50 \mathrm{~cm}+R}{\sin \left(180^{\circ}-I\right)} \\
\Rightarrow \sin \left(180^{\circ}-I\right)=\frac{50+10}{10} \cdot \sin 5^{\circ}=0.5229 \\
\Rightarrow 180^{\circ}-I=148.47^{\circ} \Rightarrow I=31.52 .93^{\circ}
\end{gathered}
$$

By Snell's Law

$$
\begin{aligned}
& n_{1} \sin I=n_{2} \sin I^{\prime} \\
& \Rightarrow I^{\prime} \Rightarrow \sin ^{-1}\left(\frac{\sin I}{\frac{n_{1}}{n_{1}}}\right)=249972^{\circ}
\end{aligned}
$$

since $L=R+\overline{O P^{\prime}}$, we need to solve for $\overline{O P^{\prime}}$. Again by the law of sines

$$
\begin{aligned}
& \frac{R}{\sin \phi}=\frac{\overline{O P^{\prime}}}{\sin I^{\prime}}, \quad \varphi=I-I^{\prime}-\theta=1.5321^{\circ} \\
\Rightarrow & \overline{O P^{\prime}}=\quad R \frac{\sin I^{\prime}}{\sin \varphi}=158.0484 \mathrm{~cm} \\
\Rightarrow & L=R+\overline{O P^{\prime}}=168.0484 \mathrm{~cm}
\end{aligned}
$$

(b) Similarly, for $\theta=0.5^{\circ}$,

$$
\begin{aligned}
I & =\sin ^{-1}\left(\frac{R+50 \mathrm{~cm}}{R} \sin \theta\right)=3.0013^{\circ} \\
I^{\prime} & =\sin ^{-1}\left(\frac{n_{1} \sin I}{n_{2}}\right)=2.4249^{\circ} \\
\varphi & =I-I^{\prime}-\theta=0.0764^{\circ} \\
\Rightarrow \overline{O P^{\prime}} & =R \frac{\sin I^{\prime}}{\sin \varphi}=317.4483 \mathrm{~cm} \\
\Rightarrow L & =R+\overline{O P^{\prime}}=327.4483 \mathrm{~cm}
\end{aligned}
$$

(C) Repeat (a) with the paraxial approximation.

We have

$$
\begin{aligned}
& \frac{n_{2}}{L} \cdots \frac{n_{1}}{-\overline{p c}}=\frac{\left(n_{2}-n_{1}\right)}{R} \\
\Rightarrow & L=\frac{n_{2}}{\frac{n_{1}}{-\overline{p c}}+\frac{\left(n_{2}-n_{1}\right)}{R}}=\frac{1.65}{\frac{4 / 3}{-50}+\frac{(1.65-4 / 3)}{10}}=330.00 \mathrm{~cm}
\end{aligned}
$$

(d) Repeat (b) with the paraxial approximation. We get the same answer as that is in (c) $L=330.00 \mathrm{~cm}$.
(e) There's a bro difference between the answers of (a) and (b), but no difference between that of (c) and (d).
(f) The answers in (c) and (d) are similar to (b) because 0.5° is small angle and the paraxial approximation is pretty valid. However, even though 5° seems pretty smell (so you might assume that it hs good enough to use the paraxial approximation), the angle of incidence $I=31.53^{\circ}$ due to the curvature of the lens, which is not small at all!
2. (d) We know that $M=\frac{d_{2}}{d_{1}}=-1000$ (Please note that the image is invert from the logo)
$A_{5}-d_{1}+d_{2} \approx d_{2}=1000 \mathrm{~m}, \quad d_{1}=-1 m$.
According to the Gaussian Lens Law,

$$
\begin{aligned}
\frac{1}{d_{2}} & =\frac{1}{f}+\frac{1}{d_{1}} \\
\Rightarrow \quad f & =\frac{1}{\frac{1}{d_{2}}-\frac{1}{d_{1}}}=0.999 \mathrm{~m}
\end{aligned}
$$

Notice that since the douds are very far auvay (close to the mathematical infinity) that the object needs to be placed very dove to the focal length.
(b) For a donble-convex lens, $R_{1}>0, R_{2}<0$ - -

There are two possibilities, $\left|R_{1}\right|=4\left|R_{2}\right|$ or $4\left|R_{1}\right|=\left|R_{2}\right|$

$$
1^{\circ} \quad\left|R_{1}\right|=4\left|R_{2}\right| \quad \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \text { (lensmater } r_{s}
$$ equation)

$$
\begin{aligned}
& \frac{1}{f}=(1.5-1)\left(\frac{1}{R_{1}}-\frac{1}{-\frac{R_{1}}{4}}\right) \\
& \Rightarrow \frac{R_{1}}{}=2.4975 \mathrm{~m} \\
& R_{2}=-0.6244 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
2^{\circ} \quad 4\left|R_{1}\right|=\left|R_{2}\right|, \begin{aligned}
\frac{1}{f} & =(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& =(n-1)\left(-\frac{1}{4 R_{1}}+\frac{1}{R_{1}}\right) \\
\Rightarrow \overline{幺 人}_{R_{1}} & =0.3746 \mathrm{~m} \\
R_{2} & =1.4985 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

3. (3) Going from spherical to cartesian coordinates gives $r=\sqrt{x^{2}+y^{2}+z^{2}}$ When $z \gg(x, y)$, this expression can be rewritten and Taylor expanded

$$
r=z \sqrt{1+\frac{x^{2}+y^{2}}{z}} \approx z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right)
$$

We also need the approximation that $\frac{1}{1+x} \approx 1$ for $x \ll 1$. Substituting the approximations into the mathematical expression for a spherical wave,

$$
E=\frac{E_{0}}{z\left(1+\frac{x^{2}+y^{2}}{2 z}\right)} \cos \left(-k z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right)+\phi\right) \approx \frac{E_{0}}{z} \cos \left(-k z-k \frac{x^{2}+y^{2}}{2 z^{2}}+\phi\right)
$$

At constant Z, the $-k Z$ term can be incorporated into the constant phase ϕ, leaving us with

$$
E=\frac{E_{0}}{z} \cos \left(-\frac{k\left(x^{2}+y^{2}\right)}{2 z}+\phi\right)
$$

(d) Assume that the lens is at $z=0$. A spherical wave emerging from anobject point located at d, has the form

$$
E=\frac{E_{0}}{\left|\alpha_{1}\right|} \cos \left[-\frac{k\left(x^{2}+y^{2}\right)}{2 d_{1}}\right]
$$

The phase shift that the 3 light acquires when it passes through a thin lens is

$$
\Delta \phi=-\frac{k\left(x^{2}+y^{2}\right)}{2 f}
$$

So the form of the resulting wave after passing through the lens will be

$$
\begin{aligned}
E & =\frac{E_{0}}{d_{1}} \cos \left[-\frac{k\left(x^{2}+y^{2}\right)}{2 d_{1}}-\frac{k\left(x^{2}+y^{2}\right)}{2}\right] \\
& =\frac{E_{0}}{d_{1}} \cos \left[-\frac{k\left(x^{2}+y^{2}\right)}{2}\left(\frac{1}{d_{1}}+\frac{1}{f}\right)\right] \\
& =\frac{E_{0}}{d_{1}} \cos \left[-\frac{k\left(x^{2}+y^{2}\right)}{\partial \alpha_{2}}\right]
\end{aligned}
$$

Here we use the thin lens approximation, as $\Delta E \ll d_{1}$, the amplitude of the wave traversing the thin-lens is treated as constant $\left(\frac{E_{0}}{d_{1}}\right)$.
Therefore the emerging wave has the form of a spherical wave emanating from a point $d e$.
4. (a)

(b) The exit pupil is the image of the aperture stop through the lenses between the aperture stop and the image.
there the aperture stop is located lem to the left of the lens, its image will be at

$$
\frac{1}{d_{2}}=\frac{1}{f}+\frac{1}{d_{1}}=\frac{1}{8}+\frac{1}{-1}=-\frac{7}{8}
$$

So the exit pupil is $\frac{8}{7}$ an to the left of the final lens.

$$
\begin{aligned}
& m=\frac{d_{2}}{d_{1}}=\frac{8}{7}, \text { so the diameter of the exit pupil is } \frac{24}{7} \\
&=3.4286 \mathrm{~cm} .
\end{aligned}
$$

The position and size of the entrance pupil can be found in the same way.

$$
\frac{1}{d_{2}}=\frac{1}{f}+\frac{1}{d_{1}}=\frac{1}{6}+\frac{1}{-3}=-\frac{1}{6}
$$

So the entrance pupil is 6 cm to the right of the first lens (as now the right side is the object side), and its diameter will be

$$
3 \times \frac{-6}{-3}=6 \mathrm{~cm}
$$

(c) The image formed by the firstiens is located at

$$
\begin{aligned}
\frac{1}{d^{2}} & =\frac{1}{6}-\frac{1}{12}=\frac{1}{12} \\
\Rightarrow d_{2} & =12 \mathrm{~cm}
\end{aligned}
$$

So the first image is located 12 cm to the right of the first hens.
The magnification of the first lens is -1 .
This image is the object for the second lens, so di for the second lens is $12-4=8 \mathrm{~cm}$. Then the final image 3 at

$$
\begin{aligned}
& \frac{1}{d_{2}}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\
& \Rightarrow d_{2}=4 \mathrm{~cm}
\end{aligned}
$$

So the final image is 4 cm to the right of the final lens. $m=\frac{4}{8}=0.5$. The total magnification of the lens system is -0.5 . The image will be $3 \times 0.5=1.5 \mathrm{~cm}$ high and it's inverted.
(e) see dragram in (a).
5. (d) For convex -plano lens,

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=(1.5-1)\left(\frac{1}{20}-\frac{1}{\infty}\right) \Rightarrow f=40 \mathrm{~cm}
$$

for plano-convex lens,

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=(1.5-1)\left(\frac{1}{\infty 0}-\frac{1}{-20}\right) \Rightarrow f=40 \mathrm{~cm}
$$

(b) For convex -plano lens,

$$
\sin I_{1}=\frac{h}{R_{1}}=\frac{10}{20} \Rightarrow I_{1}=30^{\circ}
$$

Using Snell is Law,

$$
\begin{aligned}
& 1.5 \sin I_{1}^{\prime}=\sin I_{1} \Rightarrow I_{1}^{\prime}=\sin ^{-1}\left(\frac{\sin I_{1}}{1.5}\right)=19.47^{\circ} \\
\Rightarrow & I_{2}=I_{1}-I_{1}^{\prime}=10.53^{\circ}
\end{aligned}
$$

Using Snell's Law again

$$
\begin{aligned}
& 1.5 \sin I_{2}=\sin I_{2}^{\prime} \Rightarrow I_{2}^{\prime}=15.91^{\circ} \\
& L^{\prime}=\frac{h}{\tan I_{2}^{\prime}}=35.09 \mathrm{~cm} \\
& \Delta=f-L^{\prime}=4.91 \mathrm{~cm}
\end{aligned}
$$

For plano-convex lens, $I_{1}=\sin ^{-1}\left(\frac{h}{R_{1}}\right)=30^{\circ}$
Using Snell's Law, $\quad n \sin I_{1}=\sin I_{1}^{\prime} \Rightarrow I_{1}^{\prime}=\sin ^{-1}\left(n \sin 30^{\circ}\right)$

$$
\begin{aligned}
& \Rightarrow I_{2}=I_{1}{ }^{\prime}-I_{1}=18.56^{\circ} \\
& L^{\prime}=\frac{h}{\tan I_{2}}=29.73 \mathrm{~cm} \\
& \Delta=f-L 1=\underline{10.27 \mathrm{~cm}}
\end{aligned}
$$

(c) Convex - plano lens configuration is better since $\Delta=f-L$ ' is much smaller, meaning less spherical aberration- the position where the ray intersects the optical axis is closer to the focal point.

To understand this conclusion, just reseal the fact that the incident ray will undergo a minimum deviation when it makes, more or less, the same angle as does the emerging ray. (Homework \#2 prob 1)

