EE105 Microelectronic Devices and Circuits: Basic Semiconductors

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Excellent Reference for Module 2: EE130

Chenming Hu, Modern Semiconductor Devices for Integrated Circuits, 2010 downloadable from:

Cal

https://people.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html

Silicon: Group IV Element

IA	IIA	IIIB	IYB	٧B	¥ΙΒ	YIIB		YIII		IB	IIB	IIIA		YA	YIA	YIIA	GASES
1 H 1.00797											P-t do	type pant	9	N-type dopant		1 H 1.00797	2 He 4.0026
3 Li 6.939	4 Be 9.0122											B 0.811	С С 12.0112	7 N 14.0067	8 0 15.9994	9 F 18.9984	10 Ne 20.183
11 Na 22.9898	12 Mg 24.312											13 Al 26.9815	514 Si 28.086	P.97.78	16 S 32.064	17 CI 35.453	18 Ar ^{39.948}
19 K 39.102	20 Ca 40.08	21 Sc 44.956	22 Ti 47.90	23 V 50.942	24 Cr 51.996	25 Mn ^{54.9380}	26 Fe 55.847	27 Co 58.9332	28 Ni ^{58.71}	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	Ge	As (4.9216	34 Se 78.96	35 Br 79.909	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo _{95.94}	43 Tc (99)	44 Ru 101.07	45 Rh 102.905	46 Pd 106.4	47 Åg 107.870	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 126.904	54 Xe 131.30
55 Cs 132.905	56 Ba 137.34	*57 La ^{138.91}	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.980	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	≜89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (262)	108 HS (265)	109 Mt (266)	110 ? (271)	111 ? (272)	112 ? (277)						

Resistivity of Typical Materials

29 10 ×

- Conductors
 - **Copper: 1.7 x 10⁻⁶ Ω-cm** (or 1.7 x 10⁻⁸ Ω-m)
 - <u>Aluminum</u>: <u>2.8 x 10⁻⁶</u> Ω-cm
- Insulators
 - SiO₂: 10¹⁸ Ω-cm
- Semiconductor
 - Silicon: 10^{-3} to 10^{3} Ω-cm
 - A wide range of resistivity,
 - Can be controlled by "doping" of impurities or electrical bias

 $10^{6} \times$

- Energy states of Si atom (a) expand into energy bands of Si crystal (b).
- The lower bands are filled and higher bands are empty in a semiconductor.
- The highest filled band is the valence band.
- The lowest empty band is the conduction band

Energy Band Diagram of Various Materials

At 0 Kelvin, all electrons are "locked" in covalent bonds → Behave like insulator

Top

Electrons and Holes

- At room temperature, thermal energy breaks some covalent bonds, creating free electrons and "holes"
- Hole: empty space left by electron
 - Hole "moves" as adjacent electron move into its space
 - Treat hole like a positively charged particle

Intrinsic Semiconductor

N-Type Semiconductor

Electron concentration can be greatly increased by replacing some Si atoms with P (phosphorus) or As (Arsenic), which have 5 shell electrons (one more than Si). P or As are called ("donors") $n_n = N_D$ (donor impurity concentration) $p_n = \frac{n_i^2}{N_p}$ where $n_i = 1.5 \times 10^{10} \text{ [cm}^{-3}\text{]}$ Subscript *n* refers to n-type semiconductor (n stands for "negative", referring to the charge carried by electrons) In n-type semiconductor, $n_n >> n_i >> p_n$ e.g., $N_D = 10^{17}$ cm⁻³, $n_n = 10^{17}$, $p_n = 2.2 \times 10^3$ Electrons are "majority" carriers, holes are "minority" carriers

P-Type Semiconductor

Cal

Hole concentration can be greatly increased by replacing some Si atoms with B (boron), which has 3 shell electrons (one less than Si). B is called "acceptors" $p_p = N_A$ (acceptor impurtiy concentration) $n_p = \frac{n_i^2}{N_A}$ where $n_i = 1.5 \times 10^{10} \text{ [cm}^{-3}\text{]}$ The subscript *p* refers to p-type semiconductor (p stands for "positive", referring to the charge carried by holes) In p-type semiconductor, $p_p >> n_i >> n_p$ e.g., $N_A = 10^{17} \text{ cm}^{-3}$, $p_p = 10^{17}$, $n_p = 2.2 \times 10^3$ Holes are "majority" carriers, electrons are "minority" carriers

How Electron (or Hole) Move SP=Force-time $\frac{1}{2}mV = k_{B}T = 26meV = 26\times10^{3}\times1.6\times10^{19}J$ (BE).C mean free time (T) momentum electron 9×1031kg "effective" $\square P = \underline{\underline{m}^* v} = (q E \tau)$ $V^{2} = \frac{5 \times 2 \times 10}{10^{-30}}$ mass $v = \frac{qET}{m^*} \propto E$ $=\frac{10^{-24}}{10^{-30}}=10^{4}$ $v = \mu E$ $V_{\text{th}} = 3 \times 10^{5} \frac{\text{M}}{\text{S}}$ "drife velocity" $\mu = \left(\frac{qt}{m^*}\right)$ $= 3 \times 10^7 \frac{\text{cm}}{\text{c}}$ Scattering mobility G Impurity electric field > Therman **No Electric Field** energy of S. lattice = Phonon

Mobility of Common Semiconductors

TABLE 2–1 • Electron and hole mobilities at room temperature of selected lightly doped semiconductors. T \overline{V} UV Si Ge GaAs InAs $\mu_n \,(\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$ electron 1400 30,0003900 8500 hole $\mu_p \, (\text{cm}^2/\text{V}\cdot\text{s})$ 500 470 1900 400 $\mathcal{U}_n = 3 \mathcal{U}_p$ P-type transister n-type InAs 6e らこ

Mobility vs Dopant Concentration

Current: Movement of Charged Particles (Electrons and Holes)

 $I = J \cdot Area$ $\uparrow \quad Current density$ $[Amp] <math display="block">\begin{bmatrix} A \\ cm^{2} \end{bmatrix}$ $J_{p} = P(f+2) \cdot V_{p} = \frac{P \cdot V_{p} \cdot F}{V_{p}} = \ell_{p} \cdot E$ $\uparrow \quad V_{p} = \ell_{p} \cdot E$ hole velocity

 $J_n = n \mathcal{E} \mathcal{V}_n$ $\mathcal{V}_n = \mathcal{M}_n \mathcal{E}$

Current in Semiconductor (1): Drift Current

R=P-

 $J_{n} = (-g) \cdot n \cdot (-MnE)$ = n g M n E $I = \frac{1}{R} \cdot V = \int A$ $g \cdot L$ $J = \sigma \cdot E = \frac{1}{g} \cdot E$

When an electrical field, *E*, is applied, holes moves in the direction of *E*, while electrons move opposite to *E*: $\begin{cases} v_{p-drift} = \mu_p E, \quad \mu_p : \text{ hole mobility} \\ v_{n-drift} = -\mu_n E, \quad \mu_n : \text{ electron mobility} \end{cases}$ In intrinsic Si, $\mu_n = 1350 \text{ cm}^2 / \text{V} \cdot \text{s}$

$$\mu_p = 480 \text{ cm}^2 / \text{V} \cdot \text{s}$$
 (Note: $\mu_n \approx 2.5 \mu_p$)

Current density, $J [A/cm^2]$ $J = qpv_{p-drift} + qnv_{n-drift} = q(p\mu_p + n\mu_n)E = \sigma E$ where $\sigma = q(p\mu_p + n\mu_n)$ is conductivity [S/cm] Resistivity $\rho = \frac{1}{\sigma} [\Omega-cm]$ P-type P

Resistivity vs Dopant Concentration

Current in Semiconductor (2): Diffusion Current - Holes

- If hole distribution is nonuniform, holes will move from high to low concentration areas
- Flux \propto [conc. gradient]
- Current flows since holes carry charge:

$$J_{p-diff} = qD_p\left(-\frac{dp(x)}{dx}\right)$$

 D_p : hole diffusion coef. [cm²/s]

 Note: since hole carries positive charge, hole diffusion and hole current are in the same direction

Current in Semiconductor (2): Diffusion Current - Electrons

• Similarly, electron diffusion also causes current to flow, but in opposite direction since electron carries negative charge

$$J_{n-diff} = (-q)D_n\left(-\frac{dn(x)}{dx}\right)$$
$$= qD_n\frac{dn(x)}{dx}$$

 D_n : electron diffusion coef. [cm²/s]

 J_{n-diff} : [A/cm²]

In Si,
D_n = 35 cm²/s
D_p = 12 cm²/s

Einstein Relationship

$$\frac{D_n}{\mu_n} = \frac{D_n}{\mu_n} = V_T = \frac{kT}{q}$$

 V_T : Thermal voltage At room temperature, $V_T = 26 \text{ mV}$ Proof: Total electron current:

$$J_n = J_{n-drift} + J_{n-diff} = qn(x)\mu_n E + qD_n \frac{dn(x)}{dx}$$
$$E = -\frac{d\phi}{dx}, \quad \phi: \text{ potential}$$

 $n(x) = n_0 e^{-\frac{(-q\phi)}{kT}} = n_0 e^{\frac{\phi}{V_T}}$: Boltzmann distribution

In equilibrium, no net current flow

$$\Rightarrow qn(x)\mu_n E + qD_n \frac{dn(x)}{dx} = 0$$
$$n(x)\mu_n E + D_n \frac{dn(x)}{d\phi} \frac{d\phi}{dx} = 0$$
$$n(x)\mu_n E + D_n \left(\frac{1}{V_T}n(x)\right)(-E) = 0$$
$$\frac{D_n}{d\phi} = V_T$$

 μ_n