#### EE105 Microelectronic Devices and Circuits: Basic Semiconductors

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

**Excellent Reference for Module 2:** 

#### Chenming Hu, Modern Semiconductor Devices for Integrated Circuits, 2010 downloadable from:

Cal

https://people.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html



# **Silicon: Group IV Element**

| IA                       | IIA                      | IIIB                             | IVB                              | ¥Β                         | ¥ΙΒ                          | γIIB                           |                          | YIII                       |                                 | IB                         | IIB                              | IIIA                             | ΙΥΑ                       | YA                         | <b>VIA</b>         | VIIA                      | GASES                         |
|--------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------|------------------------------|--------------------------------|--------------------------|----------------------------|---------------------------------|----------------------------|----------------------------------|----------------------------------|---------------------------|----------------------------|--------------------|---------------------------|-------------------------------|
| 1<br>H<br>1.00797        |                          |                                  |                                  |                            |                              |                                |                          |                            |                                 |                            | P-t<br>do                        | ype<br>pant                      |                           | N-ty<br>dopa               | pe<br>ant          | 1<br>H<br>1.00797         | 2<br>He<br>4.0026             |
| 3<br>Li<br>6.939         | 4<br>Be<br>9.0122        |                                  |                                  |                            |                              |                                |                          |                            |                                 |                            |                                  | 5<br><b>B</b><br>10.811          | <mark>б</mark><br>12.0112 | 7<br>N<br>14.0067          | 8<br>0<br>15.9994  | 9<br>F<br>18.9984         | 10<br>Ne<br>20.183            |
| 11<br>Na<br>22.9898      | 12<br>Mg<br>24.312       |                                  |                                  |                            |                              |                                |                          |                            |                                 |                            |                                  | 13<br>Al<br>26.9815              | 14<br>Si<br>28.086        | 15<br>P<br>30.9738         | 16<br>S<br>32.064  | 17<br>CI<br>35.453        | 18<br>Ar<br><sup>39.948</sup> |
| 19<br>K<br>39.102        | 20<br>Ca<br>40.08        | 21<br>Sc<br>44.956               | 22<br>Ti<br>47.90                | 23<br>V<br>50.942          | 24<br><b>Cr</b><br>51.996    | 25<br>Mn<br><sup>54.9380</sup> | 26<br>Fe<br>55.847       | 27<br><b>Co</b><br>58.9332 | 28<br>Ni<br>58.71               | 29<br>Cu<br>63.54          | 30<br>Zn<br>65.37                | 31<br>Ga<br>69.72                | 32<br>Ge<br>72.59         | 33<br><b>As</b><br>74.9216 | 34<br>Se<br>78.96  | 35<br><b>Br</b><br>79.909 | 36<br>Kr<br>83.80             |
| 37<br><b>Rb</b><br>85.47 | 38<br>Sr<br>87.62        | 39<br>Y<br>88.905                | 40<br>Zr<br>91.22                | 41<br>Nb<br>92.906         | 42<br>Mo<br><sub>95.94</sub> | 43<br><b>Tc</b><br>(99)        | 44<br>Ru<br>101.07       | 45<br><b>Rh</b><br>102.905 | <b>46</b><br><b>Pd</b><br>106.4 | 47<br><b>Åg</b><br>107.870 | <b>48</b><br><b>Cd</b><br>112.40 | <b>49</b><br><b>In</b><br>114.82 | 50<br>Sn<br>118.69        | 51<br>Sb<br>121.75         | 52<br>Te<br>127.60 | 53<br> <br>126.904        | 54<br>Xe<br>131.30            |
| 55<br>CS<br>132.905      | 56<br>Ba<br>137.34       | *57<br>La<br><sup>138.91</sup>   | <b>72</b><br><b>Hf</b><br>178.49 | 73<br><b>Ta</b><br>180.948 | 74<br>W<br>183.85            | 75<br><b>Re</b><br>186.2       | 76<br><b>OS</b><br>190.2 | 77<br><b>Ir</b><br>192.2   | 78<br>Pt<br>195.09              | 79<br>Au<br>196.967        | 80<br>Hg<br>200.59               | 81<br><b>TI</b><br>204.37        | 82<br>Pb<br>207.19        | 83<br>Bi<br>208.980        | 84<br>Po<br>(210)  | 85<br>At<br>(210)         | 86<br><b>Rn</b><br>(222)      |
| 87<br>Fr<br>(223)        | 88<br><b>Ra</b><br>(226) | <b>≜89</b><br><b>Ac</b><br>(227) | 104<br>Rf<br>(261)               | 105<br>Db<br>(262)         | 106<br>Sg<br>(266)           | 107<br>Bh<br>(262)             | 108<br>HS<br>(265)       | 109<br>Mt<br>(266)         | 110<br>?<br>(271)               | 111<br><b>?</b><br>(272)   | 112<br>?<br>(277)                |                                  |                           |                            |                    |                           |                               |



# **Resistivity of Typical Materials**

#### Conductors

- Copper: 1.7 x 10<sup>-6</sup> Ω-cm (or  $1.7 \times 10^{-8} \Omega$ -m)
- Aluminum: 2.8 x 10<sup>-6</sup> Ω-cm
- Insulators
  - $SiO_2$ : 10<sup>18</sup> Ω-cm
- Semiconductor
  - Silicon:  $10^{-3}$  to  $10^3 \Omega$ -cm
  - A wide range of resistivity,
  - Can be controlled by "doping" of impurities or electrical bias





### **From Atoms to Crystals**



- Energy states of Si atom (a) expand into energy bands of Si crystal (b).
- The lower bands are filled and higher bands are empty in a semiconductor.
- The highest filled band is the valence band.
- The lowest empty band is the conduction band



4

#### **Energy Band Diagram of Various Materials**









#### Crystalline Structure (Diamond Cubic)

#### Schematic Two-Dimensional Representation





At 0 Kelvin, all electrons are "locked" in covalent bonds → Behave like insulator



#### **Electrons and Holes**



- At room temperature, thermal energy breaks some covalent bonds, creating free electrons and "holes"
- Hole: empty space left by electron
  - Hole "moves" as adjacent electron move into its space
  - Treat hole like a positively charged particle





### **Intrinsic Semiconductor**



 $n = p = n_i$ 

*n* : electron concentration  $[cm^{-3}]$ 



*p* : hole concentration  $[cm^{-3}]$  $n_i = BT^{\frac{3}{2}}e^{-\frac{E_g}{2kT}}$ : instrinsic carrier concentration B: material dependent constant *T* : temperature in Kelvin  $E_g$ : bandgap energy (=1.12 eV for Si) k: Boltzmann's constant =  $8.62 \times 10^{-5}$  eV/K At room temperature (T = 300K) $n_i = 1.5 \times 10^{10} \text{ [cm}^{-3}\text{]}$ Note: There are  $5 \times 10^{22}$  atoms/cm<sup>-3</sup>, so the number of free electrons and holes are very small In general,  $np = n_i^2$ 



# **N-Type Semiconductor**





Electron concentration can be greatly increased by replacing some Si atoms with P (phosphorus) or As (Arsenic), which have 5 shell electrons (one more than Si). P or As are called "donors"  $n_n = N_D$  (donor impurtiy concentration)  $p_n = \frac{n_i^2}{N_D}$  where  $n_i = 1.5 \times 10^{10} \text{ [cm}^{-3}\text{]}$ Subscript n refers to n-type semiconductor (n stands for "negative", referring to the charge carried by electrons) In n-type semiconductor,  $n_n >> n_i >> p_n$ e.g.,  $N_D = 10^{17} \text{ cm}^{-3}$ ,  $n_n = 10^{17}$ ,  $p_n = 2.2 \times 10^3$ Electrons are "majority" carriers, holes are "minority" carriers

# **P-Type Semiconductor**





Hole concentration can be greatly increased by replacing some Si atoms with B (boron), which has 3 shell electrons (one less than Si). B is called "acceptors"  $p_p = N_A$  (acceptor impurtiy concentration)  $n_p = \frac{n_i^2}{N_A}$  where  $n_i = 1.5 \times 10^{10} \text{ [cm}^{-3}\text{]}$ The subscript *p* refers to p-type semiconductor (p stands for "positive", referring to the charge carried by holes) In p-type semiconductor,  $p_p >> n_i >> n_p$ e.g.,  $N_A = 10^{17} \text{ cm}^{-3}$ ,  $p_p = 10^{17}$ ,  $n_p = 2.2 \times 10^{3}$ Holes are "majority" carriers, electrons are "minority" carriers

#### How Electron (or Hole) Move



**No Electric Field** 





# **Mobility of Common Semiconductors**

**TABLE 2–1** • Electron and hole mobilities at room temperature of selected lightly doped semiconductors.

|                                                     | Si   | Ge   | GaAs | InAs   |
|-----------------------------------------------------|------|------|------|--------|
| $\mu_n (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$   | 1400 | 3900 | 8500 | 30,000 |
| $\mu_p \ (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$ | 470  | 1900 | 400  | 500    |





# **Mobility vs Dopant Concentration**







# Current: Movement of Charged Particles (Electrons and Holes)







# Current in Semiconductor (1): Drift Current



When an electrical field, *E*, is applied, holes moves in the direction of *E*, while electrons move opposite to *E*:  $\begin{cases} v_{p-drift} = \mu_p E, \quad \mu_p : \text{ hole mobility} \\ v_{n-drift} = -\mu_n E, \quad \mu_n : \text{ electron mobility} \end{cases}$ In intrinsic Si,  $\mu_n = 1350 \text{ cm}^2 / \text{V} \cdot \text{s}$  $\mu_p = 480 \text{ cm}^2 / \text{V} \cdot \text{s}$  (Note:  $\mu_n \approx 2.5 \mu_p$ )

Current density,  $J [A/cm^{2}]$   $J = qpv_{p-drift} + qnv_{n-drift} = q(p\mu_{p} + n\mu_{n})E = \sigma E$ where  $\sigma = q(p\mu_{p} + n\mu_{n})$  is conductivity [S/cm] Resistivity  $\rho = \frac{1}{\sigma}$  [ $\Omega$ -cm]



#### **Resistivity vs Dopant Concentration**







# Current in Semiconductor (2): Diffusion Current - Holes



- If hole distribution is nonuniform, holes will move from high to low concentration areas
- Flux ∝ [conc. gradient]
- Current flows since holes carry charge:

$$J_{p-diff} = qD_p\left(-\frac{dp(x)}{dx}\right)$$

 $D_p$ : hole diffusion coef. [cm<sup>2</sup>/s]

 Note: since hole carries positive charge, hole diffusion and hole current are in the same direction



# **Current in Semiconductor (2): Diffusion Current - Electrons**



 Similarly, electron diffusion also causes current to flow, but in opposite direction since electron carries negative charge

$$J_{n-diff} = (-q)D_n\left(-\frac{dn(x)}{dx}\right)$$
$$= qD_n\frac{dn(x)}{dx}$$



 $D_n$ : electron diffusion coef. [cm<sup>2</sup>/s]

 $J_{n-diff}$  : [A/cm<sup>2</sup>]

- In Si,
  - $D_n = 35 \text{ cm}^2/\text{s}$
  - $D_p = 12 \text{ cm}^2/\text{s}$



#### **Einstein Relationship**

$$\frac{D_n}{\mu_n} = \frac{D_n}{\mu_n} = V_T = \frac{kT}{q}$$

 $V_T$ : Thermal voltage

At room temperature,  $V_T = 26 \text{ mV}$ 



