EE105 Microelectronic Devices and Circuits

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Ideal Op Amp

- Infinite open-loop gain, $A = \infty$
- Infinite input impedance

 No current goes in
- Zero output impedance
- $V_{-} = V_{+}$ with feedback circuit
- Infinite bandwidth
- Infinite common-mode rejection

3-2

Inverting Amplifier

Inverting Amplifier: Input and Output Resistances

Non-Inverting Amplifier

Non-Inverting Amplifier: Input and Output Resistances

Practical Op-Amps

- Linear Imperfections:
 - Finite open-loop gain ($A_0 < \infty$)
 - Finite input resistance ($R_i < \infty$)
 - Non-zero output resistance ($R_o > 0$)
 - Finite bandwidth / Gain-BW Trade-off
- Other (non-linear) imperfections:
 - Slew rate limitations
 - Finite swing
 - Offset voltage
 - Input bias and offset currents
 - Noise and distortion

Simple Model of Amplifier

- Input and output capacitances are added
- Any amplifier has input capacitance due to transistors and packaging / board parasitics
- Output capacitance is usually dominated by load
 - Driving cables or a board trace

Transfer Function

 Using the concept of impedance, it's easy to derive the transfer function

Operational Transconductance Amp

- Also known as an "OTA"
 - If we "chop off" the output stage of an op-amp, we get an OTA
- An OTA is essentially a G_m amplifier. It has a current output, so if we want to drive a load resistor, we need an output stage (buffer)
- Many op-amps are internally constructed from an OTA + buffer

Op-Amp Model

- The model closely resembles the insides of an op-amp
- The input OTA stage drives a high Z node to generate a very large voltage gain
- The output buffer then can drive a low impedance load and preserve the high voltage gain

Op-Amp Gain / Bandwidth

• The dominant frequency response of the op-amp is due to the time constant formed at the high-Z node

$$G = G_m R_x$$
$$\omega_{3dB} = \omega_b = \frac{1}{R_x C_x}$$

 An interesting observation is that the gain-bandwidth product depends on G_m and C_x only

$$G \times \omega_{3dB} = G_m R_x \frac{1}{R_x C_x} = \frac{G_m}{C_x}$$

Gain-Bandwidth Trade-off

Frequency Response of Open-Loop Op Amp

$$A(j\omega) = \frac{A_0}{1 + j\omega / \omega_b}$$

$$A_0: \text{ dc gain}$$

$$\omega_b: \text{ 3dB frequency}$$

$$\omega_t = A_0 \omega_b: \text{ unity-gain bandwidth}$$

(or "gain-bandwidth product")

For high frequency, $\omega \gg \omega_b$

$$A(j\omega) = \frac{\omega_t}{j\omega}$$

Single pole response with a dominant pole at ω_{b}

Bandwidth Extension with Feedback

Overall transfer function with feedback:

$$v_o = A(j\omega)(v_i - \beta v_o);$$

$$A(j\omega) = \frac{A_o}{1 + j\frac{\omega}{\omega_b}}$$

Bandwidth Extension and Gain Reduction

Bandwidth increase:

$$BW = (1 + A_o\beta)\omega_b$$

• Gain reduces:

$$G = \frac{A_o}{1 + A_o \beta}$$

Gain-Bandwidth Product remains constant:

$$G \times BW = A_o \omega_b$$

Gain – Bandwidth Trade-off

Unity Gain Feedback Amplifier

• An amplifier that has a feedback factor β = 1, such as a unity gain buffer, has the full GBW product frequency range

 $BW = (1 + A_o\beta)\omega_b = (1 + A_o)\omega_b \approx A_o\omega_b$

Voltage Gain of Inverting Amplifier with Finite Open-Loop Gain

Frequency Response of Closed-Loop Op Amp

Steps to find frequency response of closed-loop amplifiers: 1. Find the transfer function with finite open-loop gain. For example, for inverting amplifier:

$$G = \frac{v_o}{v_I} = \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + \frac{(1 + R_2 / R_1)}{A}}$$

2. Substitute A with $A(j\omega) = \frac{A_0}{1 + j\omega / \omega_b}$

3. Simplify the expression

$$G(\omega) = \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + (1 + R_2 / R_1) \frac{1 + j\omega / \omega_b}{A_0}}$$

$$= \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + \frac{(1 + R_2 / R_1)}{A_0}} + \frac{j\omega}{\left(\frac{A_0 \omega_b}{1 + R_2 / R_1}\right)}$$

Frequency Response of Closed-Loop Inverting Amplifier Example

$$G(\omega) \approx \left(-\frac{R_2}{R_1}\right) \frac{1}{1 + \frac{j\omega}{\omega_{3dB}}} \quad \text{where } \omega_{3dB} = \frac{A_0 \omega_b}{1 + R_2 / R_1}$$

Note:

(1) 3-dB frequency is higher than

open-loop bandwidth, ω_h

(2) Gain-bandwidth product remains unchanged:

$$G \times BW = \frac{R_2}{R_1} \frac{A_0 \omega_b}{1 + R_2 / R_1} \approx \frac{R_2}{R_1} \frac{A_0 \omega_b}{R_2 / R_1} = A_0 \omega_b = \omega_t$$

|A| (dB)

3 dB

100

80