UNIVERSITY OF CALIFORNIA AT BERKELEY # College of Engineering Department of Electrical Engineering and Computer Sciences ## EE105 Lab Experiments # Lab 6: Differential Amplifier Pre-Lab Worksheet | 1 Pre-Lab | |--| | 1.1 Differential Input Stage | | Please draw the equivalent "half circuit" for the differential signals. | | | | | | | | | | Please write down the expression of the differential voltage gain $(A_{dm} = (V_{o1} - V_{o2})/V_{dm})$: | | Please write down the expression of differential gain high cutoff frequency $(f_{H_{dm}})$: | | Please write down the expression of maximum differential output swing and express it in terms of DC base voltage V_b : | | | | | | | | | | For hand calculation only: | | Resistor load R1 and R2: | ### 1.2 Widlar Current Source Tail Current Source I_{bias} : Please write down the expression that relates $I_{ref},\,I_{bias},\,V_t$ and R4: 1 PRE-LAB Please write down the output impedance of current mirror (R_{out}) : Please write down the expression of the minimum allowable voltage on the collector of Q4: According to the I_{bias} from previous section, select proper R3 and R4: Verify the performance of the current source by Hspice simulation: | Design Parameter | Hand Calculation | HSPICE Simulation | |------------------|------------------|-------------------| | I_{bias} | | | | I_{ref} | | | | R_{out} | | | Table 1: Widlar Current Source Design ## 1.3 Common Mode Characterization Please draw the equivalent "half circuit" for common mode signal. Please write down the expression of the common mode gain with 0.1% load resistor mismatch $(A_{cm} = (V_{o1} - V_{o2})/V_{dm})$: 1 PRE-LAB | The expression of minimal common input voltage: | | |---|--| | | | | The expression of maximum common input voltage: | | ### 1.4 Putting it all together Now connect the current source and differential pair together and verify its performance in Hspice | Performance | Hand Calculation | HSPICE Simulation | |--|------------------|-------------------| | Differential Mode Gain (A_{dm}) | | | | Differential Mode Gain High Cutoff Frequency (f_H) | | | | Differential Output Swing (SW) | | | | Common Mode Gain (A_{cm}) with mismatch | | | | Common Mode rejection Ratio (CMRR) with mismatch | | | **Table 2:** Overall performance verification Attach the plot of transient waveform of $(V_{o1} - V_{o2})$ v.s. V_{dm} at a frequency below the cutoff frequency. Attach the plot showing evidence of a 2V differential output swing. Attach the plot of the frequency response of A_{dm} from 10Hz to 100kHz. Attach the plot of transient waveform of $(V_{o1}-V_{o2})$ v.s. V_{cm} with 0.1% load resistor mismatch. Attach the plot of the frequency response of A_{cm} with 0.1% load resistor mismatch from 10Hz to 100kHz.