UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Lab 6: Differential Amplifier Pre-Lab Worksheet

1 Pre-Lab
1.1 Differential Input Stage
Please draw the equivalent "half circuit" for the differential signals.
Please write down the expression of the differential voltage gain $(A_{dm} = (V_{o1} - V_{o2})/V_{dm})$:
Please write down the expression of differential gain high cutoff frequency $(f_{H_{dm}})$:
Please write down the expression of maximum differential output swing and express it in terms of DC base voltage V_b :
For hand calculation only:
Resistor load R1 and R2:

1.2 Widlar Current Source

Tail Current Source I_{bias} :

Please write down the expression that relates $I_{ref},\,I_{bias},\,V_t$ and R4:

1 PRE-LAB

Please write down the output impedance of current mirror (R_{out}) :

Please write down the expression of the minimum allowable voltage on the collector of Q4:

According to the I_{bias} from previous section, select proper R3 and R4:

Verify the performance of the current source by Hspice simulation:

Design Parameter	Hand Calculation	HSPICE Simulation
I_{bias}		
I_{ref}		
R_{out}		

Table 1: Widlar Current Source Design

1.3 Common Mode Characterization

Please draw the equivalent "half circuit" for common mode signal.

Please write down the expression of the common mode gain with 0.1% load resistor mismatch $(A_{cm} = (V_{o1} - V_{o2})/V_{dm})$:

1 PRE-LAB

The expression of minimal common input voltage:	
The expression of maximum common input voltage:	

1.4 Putting it all together

Now connect the current source and differential pair together and verify its performance in Hspice

Performance	Hand Calculation	HSPICE Simulation
Differential Mode Gain (A_{dm})		
Differential Mode Gain High Cutoff Frequency (f_H)		
Differential Output Swing (SW)		
Common Mode Gain (A_{cm}) with mismatch		
Common Mode rejection Ratio (CMRR) with mismatch		

Table 2: Overall performance verification

Attach the plot of transient waveform of $(V_{o1} - V_{o2})$ v.s. V_{dm} at a frequency below the cutoff frequency.

Attach the plot showing evidence of a 2V differential output swing.

Attach the plot of the frequency response of A_{dm} from 10Hz to 100kHz.

Attach the plot of transient waveform of $(V_{o1}-V_{o2})$ v.s. V_{cm} with 0.1% load resistor mismatch.

Attach the plot of the frequency response of A_{cm} with 0.1% load resistor mismatch from 10Hz to 100kHz.