Lab 6: Differential Amplifier Pre-Lab Worksheet

1 Pre-Lab

1.1 Differential Input Stage

Please draw the equivalent "half circuit" for the differential signals.

Please write down the expression of the differential voltage gain $\left(A_{d m}=\left(V_{o 1}-V_{o 2}\right) / V_{d m}\right)$: \qquad

Please write down the expression of differential gain high cutoff frequency $\left(f_{H_{d m}}\right)$: \qquad

Please write down the expression of maximum differential output swing and express it in terms of DC base voltage V_{b} :

For hand calculation only:

Resistor load R1 and R2: \qquad

Tail Current Source $I_{\text {bias }}$: \qquad

1.2 Widlar Current Source

Please write down the expression that relates $I_{\text {ref }}, I_{b i a s}, V_{t}$ and R4:

Please write down the expression that relates $I_{\text {ref }}, V_{b e 3}, \mathrm{R} 3, \mathrm{VDD}$ and VSS:

Please write down the output impedance of current mirror $\left(R_{\text {out }}\right)$:

Please write down the expression of the minimum allowable voltage on the collector of Q4:

According to the $I_{b i a s}$ from previous section, select proper R3 and R4: \qquad

Verify the performance of the current source by Hspice simulation:

Design Parameter	Hand Calculation	HSPICE Simulation
$I_{\text {bias }}$		
$I_{\text {ref }}$		
$R_{\text {out }}$		

Table 1: Widlar Current Source Design

1.3 Common Mode Characterization

Please draw the equivalent "half circuit" for common mode signal.

Please write down the expression of the common mode gain with 0.1% load resistor mismatch $\left(A_{c m}=\right.$ $\left.\left(V_{o 1}-V_{o 2}\right) / V_{d m}\right)$: \qquad

The expression of minimal common input voltage: \qquad

The expression of maximum common input voltage: \qquad

1.4 Putting it all together

Now connect the current source and differential pair together and verify its performance in Hspice

Performance	Hand Calculation	HSPICE Simulation
Differential Mode Gain $\left(A_{d m}\right)$		
Differential Mode Gain High Cutoff Frequency $\left(f_{H}\right)$		
Differential Output Swing (SW)		
Common Mode Gain $\left(A_{c m}\right)$ with mismatch		

Table 2: Overall performance verification

Attach the plot of transient waveform of $\left(V_{o 1}-V_{o 2}\right)$ v.s. $V_{d m}$ at a frequency below the cutoff frequency.
Attach the plot showing evidence of a 2 V differential output swing.

Attach the plot of the frequency response of $A_{d m}$ from 10 Hz to 100 kHz .

Attach the plot of transient waveform of $\left(V_{o 1}-V_{o 2}\right)$ v.s. $V_{c m}$ with 0.1% load resistor mismatch.
Attach the plot of the frequency response of $A_{c m}$ with 0.1% load resistor mismatch from 10 Hz to 100 kHz .

