UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 2: Diodes, Bipolar Junction Transistors and MOS Characterization

3 Lab

3.1	Diode Parameter Characteristic
P	lot $log(I_d)vs.V_d$ curve. Fit the ideality factor of the diode:
P	lot $I_d vs. V_d$ curve with $100mA$ compliance.
Fi	it the saturation current I_s :, series resistance R_s :
P	lot $I_d vs. V_d$ curve with $10nA$ upper limit.
P	lot $C_D vs. V_R$ curve and $\frac{1}{C_D^2} vs. V_R$.
E	xtract the zero bias capacitance $C_{jo}A$:, built-in voltage V_j :
3.2	Bipolar Junction Transistor Characterization
P	lot $I_c vs. V_{CE}$ curves with different I_B .
W	That is the averaged early voltage V_A :
P	lot $\beta_F vs. I_C$.
P	lot $C_{BC}vs.V$ curve and $\frac{1}{C_{BC}^2}vs.V$.
E	xtract the zero bias capacitance $C_{jo}A$:, built-in voltage V_j :
3.3	MOSFET Characterization
P	lot $I_D vs. V_{DS}$ curves with different V_{GS} . Label the cutoff, triode and saturation regions on the plot.
W	That is the channel length modulation λ :
W	What is the transconductance G_m with a bias of $V_{GS} = 2.1V$ and $V_{DS} = 1.5V$:
W	What is the transconductance G_m with a bias of $V_{GS} = 2.1V$ and $V_{DS} = 0.06V$:
P	lot $I_D^{\frac{1}{2}} vs. V_G$, extract V_{TH} : and K_n :

3 LAB

Plot $C_{GS}vs.V_{GS}$ curve.

What zero bias drain gate capacitance C_{GD} : ______.