UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 1: Non-Ideal Op-Amps Pre-Lab Worksheet

2 Pre-Lab

To make the plots more readable and to save on printer toner, change the background color of your plots to white before printing your plot. In WaveView, click $Config \rightarrow Preferences$ to change the WaveView program settings. Next, click the *Waveview* tab, and find the *Waveview Background* option and set it to *White*.

2.1 DC Open Loop Transfer Characteristic

Open loop gain A_0 :

Voltage offset $V_{off} \equiv -V_{shift}$:

Attach your plot of the DC transfer characteristic to the end of the worksheet. Label it please.

2.2 Nulling the Offset Voltage

Draw the circuit used to null the offset voltage connected to the pinout diagram in the space below.

Why do we use a potentiometer to null the offset voltage?

2.3 Slew Rate Measurement in Unity Gain Configuration

Slew Rate:

Attach your plot of V_{out} and V_{in} versus time to the end of the worksheet.

2.4 Gain and Bandwidth in Unity Gain Configuration

Gain A_0 : _____ Bandwidth f_{3dB} : _____

2.5 Gain and Bandwidth in Non-Inverting Amplifier Configuration

 $R = 10 \text{ k}\Omega$: Gain A_0 :

Bandwidth f_{3dB} :

 $R = 100 \text{ k}\Omega$: Gain A_0 :

Bandwidth f_{3dB} :

Attach your plot of the magnitude responses $20 \log \left| \frac{V_{out}}{V_{in}} \right|$ of the unity gain amplifier from Problem 2.4 and the two non-inverting amplifiers to the end of the worksheet.

At approximately what frequency and gain do the three curves intersect on the plot? What does this mean?