UNIVERSITY OF CALIFORNIA AT BERKELEY
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 3: Single Stage CE \& CS Amplifier Lab Worksheet

1 Lab

Please remember to bring USB storage to save oscilloscope captures. Make sure you have desired measurement results displayed on the picture you saved.

1.1 Attenuation Network

Measured Attenuation Ratio: \qquad

1.2 Single Stage CE BJT Amplifier

Table 1: Component Values

Component Values	Measurement	Simulation(Refer to Prelab)
$R_{b 1}$		
$R_{b 2}$		
R_{c}		
R_{e}		

Table 2: Device Operating Points

Operating Points	Measurement	Simulation(Refer to Prelab)
$V_{b e}$		
$V_{c e}$		
I_{b}		
I_{c}		

Table 3: Performance

Performance	Measurement	Simulation(Refer to Prelab)
Middle Band Gain $\left(A_{m i d}\right)$		
Low Cutoff Frequency $\left(f_{L}\right)$		
High Cutoff Frequency $\left(f_{H}\right)$		
Output Swing(SW)		
Total Power Consumption $\left(P_{\text {total }}\right)$		

Attach the Bode plot of voltage gain(in dB) with frequency from 100 Hz to 100 kHz (in log scale). Mark $A_{m i d}, f_{L}$ and f_{H} on the curve.

Attach output waveform with $V_{\text {source }}=1 \mathrm{~V}$ at middle band frequency. Record the magnitude(pk-pk) and frequency of the function generator aside.

Attach output waveform when output is swing limited. Record the magnitude(pk-pk) and frequency of the function generator aside.

1.3 Single Stage CS MOS Amplifier

Table 4: Component Values

Component Values	Measurement	Simulation(Refer to Prelab)
$R_{g 1}$		
$R_{g 2}$		
R_{d}		
R_{s}		

Table 5: Device Operating Points

Operating Points	Measurement	Simulation(Refer to Prelab)
$V_{g s}$		
$V_{d s}$		
I_{d}		

Table 6: Performance

Performance	Measurement	Simulation(Refer to Prelab)
Middle Band Gain $\left(A_{m i d}\right)$		
Low Cutoff Frequency $\left(f_{L}\right)$		
High Cutoff Frequency $\left(f_{H}\right)$		
Output Swing(SW)		
Total Power Consumption $\left(P_{\text {total }}\right)$		

Attach the Bode plot of voltage gain(in dB) with frequency from 100 Hz to 100 kHz (in log scale). Mark $A_{m i d}, f_{L}$ and f_{H} on the curve.

Attach output waveform with $V_{\text {source }}=1 \mathrm{~V}$ at middle band frequency. Record the magnitude(pk-pk) and frequency of the function generator aside.

Attach output waveform when output is swing limited. Record the magnitude(pk-pk) and frequency of the function generator aside.

