UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 3: Single Stage CE & CS Amplifier Lab Worksheet

1 Lab

Please remember to bring USB storage to save oscilloscope captures. Make sure you have desired measurement results displayed on the picture you saved.

1.1 Attenuation Network

Measured Attenuation Ratio:

1.2 Single Stage CE BJT Amplifier

Component Values	Measurement	Simulation(Refer to Prelab)
R_{b1}		
R_{b2}		
R_c		
R_e		

 Table 1: Component Values

Operating Points	Measurement	Simulation(Refer to Prelab)
V_{be}		
V_{ce}		
I_b		
I_c		

Table 3:Performance

Ī	Performance	Measurement	Simulation(Refer to Prelab)
	Middle Band $\operatorname{Gain}(A_{mid})$		
	Low Cutoff Frequency (f_L)		
	High Cutoff Frequency (f_H)		
Ĩ	Output Swing(SW)		
Ī	Total Power Consumption (P_{total})		

Attach the Bode plot of voltage gain (in dB) with frequency from 100Hz to 100kHz (in log scale). Mark A_{mid} , f_L and f_H on the curve.

Attach output waveform with $V_{source}=1$ V at middle band frequency. Record the magnitude(pk-pk) and frequency of the function generator aside.

Attach output waveform when output is swing limited. Record the magnitude(pk-pk) and frequency of the function generator aside.

1.3 Single Stage CS MOS Amplifier

Component Values	Measurement	Simulation(Refer to Prelab)
R_{g1}		
R_{g2}		
R_d		
R_s		

 Table 4: Component Values

Table 5: Device Operating Points

Operating Points	Measurement	Simulation(Refer to Prelab)
V_{gs}		
V_{ds}		
I_d		

Table 6: Performance

Performance	Measurement	Simulation(Refer to Prelab)
Middle Band $Gain(A_{mid})$		
Low Cutoff Frequency (f_L)		
High Cutoff Frequency (f_H)		
Output Swing(SW)		
Total Power Consumption (P_{total})		

Attach the Bode plot of voltage gain(in dB) with frequency from 100Hz to 100kHz (in log scale). Mark A_{mid} , f_L and f_H on the curve.

Attach output waveform with $V_{source} = 1$ V at middle band frequency. Record the magnitude(pk-pk) and frequency of the function generator aside.

Attach output waveform when output is swing limited. Record the magnitude(pk-pk) and frequency of the function generator aside.