UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 3: Single Stage CE & CS Amplifier Pre-Lab Worksheet

1 Pre-Lab

1.1 Attentuation Network

To make the plots more readable and to save on printer toner, change the background color of your plots to white before printing your plot. In WaveView, click $Config \rightarrow Preferences$ to change the WaveView program settings. Next, click the Waveview tab, and find the Waveview Background option and set it to White.

Attentuation Ratio V_{in}/V_{source} :	
Equivalent Impedance R_{in} :	
Draw Thevenin equivalent model:	
1.2 Single Stage CE BJT Amplifier	
Explain the function of R_e :	
Small Signal Circuit:	
Expression of middle band gain A_v :	
Expression of output impedance of the amplifier R_{out} :	
Expression of high cutoff frequency f_H :	

1 PRE-LAB

Table 1: Component Design

Component Design	Hand Calculation	Hspice Simulation
R_{b1}		
R_{b2}		
R_c		
R_e		

Table 2: Performance Verification

Performance	Hand Calculation	Hspice Simulation
Middle Band $Gain(A_{mid})$		
High Cutoff Frequency (f_H)		
Output Swing(SW)		
Total Power Consumption (P_{total})		

Plot Amplifier Gain(in dB20) v.s. Frequency (in log scale)

Plot Input and Output Waveforms showing the Output Swing

1.3 Single Stage CS MOSFET Amplifier

Explain the function of R_s :

Small Signal Circuit:

Expression of middle band gain A_v :

Expression of output impedance of the amplifier R_{out} :

Expression of high cutoff frequency f_H :

Table 3: Component Design

Component Design	Hand Calculation	Hspice Simulation
R_{g1}		
R_{g2}		
R_d		
R_s		

1 PRE-LAB

Table 4: Performance Verification

Performance	Hand Calculation	Hspice Simulation
Middle Band $Gain(A_{mid})$		
High Cutoff Frequency (f_H)		
Output Swing(SW)		
Total Power Consumption (P_{total})		

Plot Amplifier Gain(in dB20) v.s. Frequency (in log scale)

Plot Input and Output Waveforms showing the Output Swing