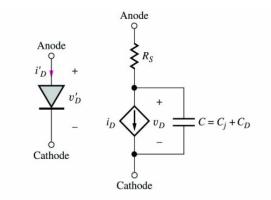
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences

EE 105: MICROELECTRONIC DEVICES AND CIRCUITS


http://www-inst.eecs.berkeley.edu/~ee105/fa14/index.html

SPICE Model of pn Junction:

In class, we described the current-voltage and capacitance-voltage relationship as

$$i_{D} = I_{S} \left[\exp\left(\frac{qv_{D}}{nkT}\right) - 1 \right] = I_{S} \left[\exp\left(\frac{v_{D}}{nV_{T}}\right) - 1 \right]$$
$$C_{j} = \frac{C_{j0}A}{\sqrt{1 + \frac{v_{R}}{\phi_{j}}}}$$

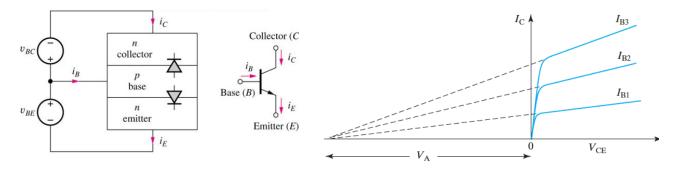
The parameter *n* is called "ideality factor". For ideal diode at normal current, *n* is equal to 1. In real devices, it could deviate from 1. The ideality factor can be easily extracted from the semi-log plot of i_D -vs- V_D . The SPICE model of a pn junction is shown below:

$$i_D = IS\left[\exp\left(\frac{v_D}{NV_T}\right) - 1\right]$$

$$C_D = \mathrm{TT}\frac{i_D}{NV_T} \quad \text{for} \quad v_D \ge 0 \qquad C_j = \frac{CJO}{\left(1 - \frac{v_D}{VJ}\right)^M} RAREA \quad \text{for} \quad v_D \le 0$$

Note the expression for C_j is slightly different. If M=0.5, the expression is exactly the same as that derived in class. This corresponds to pn junctions with constant doping concentrations, i.e., N_D and N_A are constant. This is called "abrupt junction". If they are not constant, for example, in so-called "graded" pn junctions, M could deviate from 0.5.

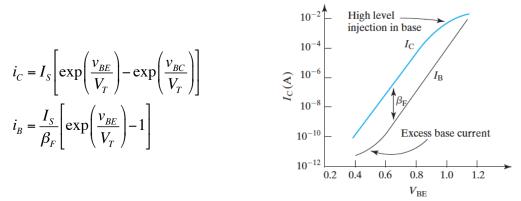
The values of M and built-in potential, V_j (or ϕ_j), can be extracted from experimental data by curve fitting.

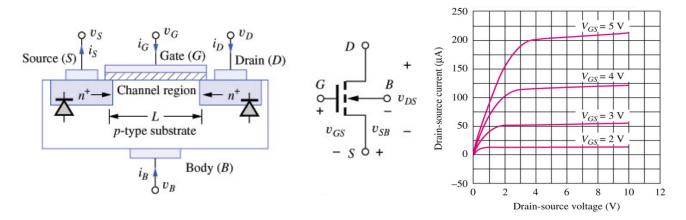

If M=0.5, V_i can be found by plotting

$$\frac{1}{C_i^2}$$
 vs V_D .

The SPICE model also includes diffusion capacitance, C_D . It is negligible for reverse bias. We will ignore it here.

The SPICE model also includes a series resistance, R_s . Its value can be extracted from the slope of the I-V curve at high current: the total resistance at high current is dominated by R_s .


Bipolar Junction Transistor (BJT)


The schematic structure, symbol, and the current-voltage (I-V) characteristics of a BJT are shown above. The collector current, I_C , is controlled by base current, I_B . The flat part of the I-V curves is call "forward active" region. The flatness of the I_C curves is described by "Early voltage", V_A :

$$r_0 = \left(\frac{\partial I_C}{\partial V_{\rm CE}}\right)^{-1} = \frac{V_{\rm A}}{I_{\rm C}}$$

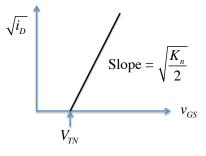
The current gain is defined as $\beta = \frac{I_C}{I_B}$. The collector and the base currents are expressed as

In semi-log plot of I_B and I_C vs. V_{BE} , both are linear curves except for very low and very high currents. The ratio between them is the current gain, β . **MOSFET (Metal-oxide-semiconductor field effect transistors):**

The schematic structure, symbol, and current-voltage (I-V) characteristics of an N-channel MOSFET (NMOS) are shown above. The current flowing from drain to source, I_{DS} , (or electrons moving from source to drain) is controlled by the gate-source voltage, V_{GS} . On the "flat" part of the I-V curves, the so-called "saturation region", is described by the following equation:

$$i_{D} = \frac{\mu_{n} C_{ox}^{*}}{2} \frac{W}{L} (v_{GS} - V_{TN})^{2} (1 + \lambda v_{DS})$$
$$= \frac{K_{n}}{2} (v_{GS} - V_{TN})^{2} (1 + \lambda v_{DS})$$

 V_{TN} : threshold voltage


 λ : channel length modulation parameter

The parameters can be extracted experimentally:

• Channel length modulation parameter, λ , can be extracted by measuring the slope of the I-V curves in the saturation region:

$$\lambda = \frac{1}{i_D} \frac{\Delta i_D}{\Delta v_{DS}}$$

• The threshold voltage and K_n can be found by plotting $\sqrt{i_D}$ vs. v_{GS} (ignore channel modulation here since $\lambda v_{DS} \ll 1$):

