Lecture 17

Bipolar Junction Transistors (BJT)
Reading: 7.1 – 7.5

- NPN or PNP sandwich (Two back-to-back diodes)
- How does current flow? Base is very thin.
- A good BJT satisfies the following
 \[
 I_C \approx -I_E \\
 I_C \gg I_B \\
 I_C \approx I_e e^{\frac{qV_{BE}}{kT}}
 \]
Actual BJT Cross Section

- Vertical npn sandwich (pnp is usually a lateral structure)
- n+ buried layout is a low resistance contact to collector
- Base width determined by vertical distance between emitter diffusion and base diffusion

BJT Layout

- Emitter area most important layout parameter
BJT Schematic Symbol

- Collector current is controlled by base current linearly.
- Collector current is an exponential function of the base-emitter voltage.

BJT Collector Characteristic

- Ground emitter
- Fix V_{CE}
- Drive base with fixed current I_B
- Measure the collector current
Collector Characteristics (I_B)

Base-Emitter Voltage Control
Transistor Action

- Base-emitter junction is forward biased and collector-base junction is reverse biased
- Electrons “emitted” into base much more than holes since the doping of emitter is much higher
- Magic: Most electrons cross the base junction and are swept into collector
- Why? Base width much smaller than diffusion length. Base-collector junction pulls electrons into collector
Diffusion Currents

- Minority carriers in base form a uniform diffusion current. Since emitter doping is higher, this current swamps out the current portion due to the minority carriers injected from base.

BJT Currents

Collector current is nearly identical to the (magnitude) of the emitter current ... define

\[I_C = -\alpha_F I_E \quad \alpha_F = .999 \]

KCL:

\[-I_E = I_C + I_B \]

DC Current Gain:

\[I_C = -\alpha_F I_E = \alpha_F (I_B + I_C) \]

\[I_C = \frac{\alpha_F}{1-\alpha_F} I_B = \beta_F I_B \]

\[\beta_F = \frac{\alpha_F}{1-\alpha_F} = \frac{.999}{.001} = 999 \]
Origin of α_F

Base-emitter junction: some reverse injection of holes into the emitter \rightarrow base current isn’t zero

![Diagram of transistor showing base-emitter junction and base current]

Some electrons lost due to recombination

Typical: $\alpha_F \approx 0.99$ $\beta_F \approx 100$

Collector Current

Diffusion of electrons across base results in

$$J_n^{\text{diff}} = qD_n \frac{dn_p}{dx} = \left(\frac{qD_n n_{pB0}}{W_B} \right) \frac{qV_{BE}}{kT} e^{\frac{qV_{BE}}{kT}}$$

$$I_S = \left(\frac{qD_n n_{pB0} A_E}{W_B} \right)$$

$$I_C = I_S e^{\frac{qV_{BE}}{kT}}$$
Base Current

Diffusion of holes across emitter results in

\[J_{p\text{ diff}} = -qD_p \frac{dp_{nE}}{dx} = \left(\frac{qD_p p_{nE0}}{W_E} \right) \left(\frac{qV_{BE}}{e^{kT}} - 1 \right) = -2D_p \frac{p_{nE}}{W_E} \]

\[I_B = \left(\frac{qD_p p_{nE0} A_E}{W_E} \right) \left(\frac{qV_{BE}}{e^{kT}} - 1 \right) \]

Current Gain

\[\beta_p = \frac{I_C}{I_B} = \frac{\left(\frac{qD_n n_{pB0} A_E}{W_B} \right)}{\left(\frac{qD_p p_{nE0} A_E}{W_E} \right)} = \left(\frac{D_n}{D_p} \right) \left(\frac{n_{pB0}}{p_{nE0}} \right) \left(\frac{W_E}{W_B} \right) \]

Minimize base width

\[\left(\frac{n_{pB0}}{p_{nE0}} \right) = \frac{n_{pB0}}{n_{nE0}} = \frac{N_{N_E}}{N_{A,B}} \]

Maximize doping in emitter
Ebers-Moll Equations

Derivation: Write emitter and collector currents in terms of internal currents at two junctions

\[
I_E = -I_{ES} \left(e^{\frac{V_{BE}}{V_{th}}} - 1\right) + \alpha_R I_{CS} \left(e^{\frac{V_{BC}}{V_{th}}} - 1\right)
\]

\[
I_C = \alpha_F I_{ES} \left(e^{\frac{V_{BE}}{V_{th}}} - 1\right) - I_{CS} \left(e^{\frac{V_{BC}}{V_{th}}} - 1\right)
\]

\[
\alpha_F I_{ES} = \alpha_R I_{CS}
\]

Ebers-Moll Equivalent Circuit

Building blocks: diodes and \(I\)-controlled \(I\) sources

![Ebers-Moll Equivalent Circuit Diagram]
Forward Active Region

B-C junction is not forward-biased → I_R is very small

![Diagram showing forward active region]

Typical Values:

$V_{BE} = 0.7$

$V_{CE} > 0.2$

Simplified Ebers-Moll

Forward-Active Case:

$V_{BE} = 0.7$

$I_C = \beta F I_B$

Saturation: both diodes are forward-biases → batteries

$I_C = V_{FE} - V_{BE}$
Base-Emitter Voltage Control

- Saturation Region (Low Output Resistance)
- Reverse Active (Bad Transistor)
- Forward Active Region (High Output Resistance)

Actual BJT Cross Section

- Vertical npn sandwich (pnp is usually a lateral structure)
- n+ buried layout is a low resistance contact to collector
- Base width determined by vertical distance between emitter diffusion and base diffusion
Small-Signal Models

Analogy from MOSFET s.s. model:

\[i_D = f(v_{GS}, v_{DS}, v_{BS}) \quad i_C = f(v_{BE}, v_{CE}) \]

Transconductance \(g_m \)

- The transconductance is analogous to diode conductance
Transconductance (cont)

- **Forward-active large-signal current:**
 \[i_C = I_s e^{\frac{v_{BE}}{V_{th}}} (1 + v_{CE}/V_A) \]

- Differentiating and evaluating at \(Q = (V_{BE}, V_{CE}) \)
 \[\frac{di_C}{dv_{BE}} \bigg|_Q = \frac{q}{kT} I_s e^{\frac{qV_{BE}}{kT}} (1 + V_{CE}/V_A) \]
 \[g_m = \frac{di_C}{dv_{BE}} \bigg|_Q = \frac{qI_C}{kT} = \frac{I_C}{v_{th}} \]

Comparison with MOSFET

- **Typical bias point:** drain/coll. current = 100 \(\mu \text{A} \);
 Select \((W/L) = 8/1, \mu_n C_{ox} = 100 \, \mu \text{A}/\text{V}^2\)

- **BJT:**
 \[g_m = \frac{qI_C}{kT} = \frac{I_C}{V_{th}} \]
 \[g_m = \frac{I_C}{V_{th}} = \frac{100\mu}{25m} = 4 \text{mS} \]

- **MOSFET:**
 \[g_m = \frac{2I_D}{V_{GS}-V_T} \]
 \[g_m = \frac{2I_D}{V_{GS}-V_T} = \sqrt{2\mu C_{ox} \frac{W}{L} I_D} = \sqrt{2 \times 100 \mu \times 8 \times 100 \mu} = 400 \mu \text{S} \]
BJT Base Currents

Unlike MOSFET, there is a DC current into the base terminal of a bipolar transistor:

$$I_B = I_C / \beta_S = (I_S / \beta_S) e^{\gamma_{BE} / kT} \left(1 + V_{CE} / V_A\right)$$

To find the change in base current due to change in base-emitter voltage:

$$\frac{1}{\sqrt{\pi}} = \left| \frac{\partial i_B}{\partial V_{BE}} \right|_{Q} = \left| \frac{\partial i_B}{\partial i_C} \right|_{Q} \frac{\partial i_C}{\partial V_{BE}} \right|_{Q} = \frac{1}{\beta} g_m$$

$$\frac{g_m}{g_m} = 4 \mu_m S$$

$$\beta = 100$$

$$r_{k}\beta \frac{g_m}{g_m} = 25 k$$

Small Signal Current Gain

The diagram illustrates the relationship between the collector current (I_C) and the base current (I_B) with varying base-emitter voltage (V_{BE}). The current gain β is defined as

$$\beta = \frac{\Delta I_C}{\Delta I_B} = \beta_S$$
Input Resistance r_{IP}

\[
(r_{\pi})^{-1} = \left. \frac{\partial i_B}{\partial v_{BE}} \right|_{i_Q} = \frac{1}{\beta} \left. \frac{\partial i_C}{\partial v_{BE}} \right|_{i_Q} = \frac{g_m}{\beta}
\]

In practice, the DC current gain β_F and the small-signal current gain β_o are both highly variable (+/- 25%)

Typical bias point: DC collector current = 100 μA

Output Resistance r_o

Why does current increase slightly with increasing v_{CE}?

Model: introduce the Early voltage

\[
i_C = I_S e^{v_{BE}/V_{th}} (1 + v_{CE}/V_A)
\]
Graphical Interpretation of r_o

\[V_o = \left(\frac{2 \beta I_c}{r_{ce}} \right)^{-1} \approx 2 \left(\frac{I_s e^\frac{v_{be}}{V_T} (1 + \frac{v_{ce}}{V_b})}{2 v_{ce}} \right)^{-1} = \left(\frac{I_C}{V_H} \right)^{-1} \]

BJT Small-Signal Model

\[g_m i_b + \beta v_r = \beta i_b \]

\[v_r = \beta \]

\[i_c = i_b r_f \]

\[v_{ce} = i_b r_f \]

\[v_{be} = r_{pi} i_b \]
BJT Capacitances

Base-charging capacitance C_b: due to minority carrier charge storage (mostly electrons in the base)

$$C_b = g_m \tau_F$$

Base-emitter depletion capacitance: $C_{jE} = 1.4 \; C_{jE0}$

Total B-E capacitance: $C_{\pi} = C_{jE} + C_b$